咨询与建议

限定检索结果

文献类型

  • 91 篇 期刊文献
  • 81 篇 会议

馆藏范围

  • 172 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 106 篇 工学
    • 43 篇 计算机科学与技术...
    • 42 篇 软件工程
    • 22 篇 机械工程
    • 22 篇 生物医学工程(可授...
    • 21 篇 电气工程
    • 20 篇 生物工程
    • 18 篇 电子科学与技术(可...
    • 17 篇 控制科学与工程
    • 14 篇 化学工程与技术
    • 11 篇 信息与通信工程
    • 8 篇 光学工程
    • 8 篇 仪器科学与技术
    • 7 篇 动力工程及工程热...
    • 5 篇 材料科学与工程(可...
    • 4 篇 交通运输工程
    • 3 篇 土木工程
  • 64 篇 理学
    • 27 篇 生物学
    • 25 篇 数学
    • 20 篇 物理学
    • 18 篇 化学
    • 11 篇 统计学(可授理学、...
    • 9 篇 系统科学
  • 22 篇 医学
    • 17 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 7 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 21 篇 管理学
    • 11 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 5 篇 工商管理
  • 4 篇 教育学
    • 3 篇 心理学(可授教育学...
  • 2 篇 法学
  • 2 篇 农学
  • 1 篇 哲学
  • 1 篇 经济学
  • 1 篇 历史学
  • 1 篇 艺术学

主题

  • 6 篇 training
  • 4 篇 trajectory
  • 4 篇 machine learning
  • 3 篇 deep learning
  • 3 篇 markov processes
  • 3 篇 neural networks
  • 3 篇 control systems
  • 3 篇 benchmarking
  • 3 篇 mathematical mod...
  • 3 篇 forecasting
  • 2 篇 learning systems
  • 2 篇 simulation
  • 2 篇 transfer learnin...
  • 2 篇 electronic mail
  • 2 篇 lighting
  • 2 篇 jerk level
  • 2 篇 trajectories
  • 2 篇 convolution
  • 2 篇 electronic nose
  • 2 篇 speech recogniti...

机构

  • 8 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 8 篇 sysu-cmu shunde ...
  • 7 篇 school of inform...
  • 5 篇 financial univer...
  • 5 篇 department for i...
  • 5 篇 christian dopple...
  • 4 篇 research platfor...
  • 4 篇 automatic contro...
  • 4 篇 department of ma...
  • 4 篇 department of da...
  • 4 篇 wolfgang pauli i...
  • 3 篇 baidu research
  • 3 篇 school of cybers...
  • 3 篇 toyota motor cor...
  • 3 篇 science medical ...
  • 3 篇 department of ra...
  • 3 篇 machine learning...
  • 3 篇 research center ...
  • 3 篇 laboratory of la...

作者

  • 9 篇 exl lukas
  • 9 篇 schrefl thomas
  • 8 篇 yunong zhang
  • 7 篇 oezelt harald
  • 6 篇 breth leoni
  • 6 篇 kovacs alexander
  • 5 篇 kornell alexande...
  • 5 篇 wang you
  • 5 篇 fischbacher joha...
  • 5 篇 luo zhiyuan
  • 5 篇 min yang
  • 5 篇 li guang
  • 5 篇 mauser norbert j...
  • 5 篇 gusenbauer marku...
  • 4 篇 bakas spyridon
  • 4 篇 hovorka markus
  • 4 篇 suess dieter
  • 4 篇 yano masao
  • 4 篇 sakuma noritsugu
  • 4 篇 kato akira

语言

  • 158 篇 英文
  • 10 篇 其他
  • 3 篇 中文
检索条件"机构=Control Systems & Machine Learning Research Laboratory"
172 条 记 录,以下是11-20 订阅
排序:
Hospital plastic waste valorization through microwave-assisted Pyrolysis: Experimental and modeling studies via machine learning
收藏 引用
Journal of Cleaner Production 2025年 514卷
作者: Potnuri, Ramesh Sankar Rao, Chinta Surya, Dadi Venkata Kumar, Abhishankar Control Systems & Machine Learning Research Laboratory Department of Chemical Engineering National Institute of Technology Karnataka Surathkal 575025 India Department of Chemical Engineering Pandit Deendayal Energy University Gandhinagar382007 India MPM Infosoft Pvt. Ltd. IIT Madras Research Park Chennai600113 India
The COVID-19 pandemic generated a global upsurge in hospital plastic waste (HPW) as a consequence of the widespread utilization of personal protective equipment (PPE) composed of diverse polymer materials. The constan... 详细信息
来源: 评论
State Derivative Normalization for Continuous-Time Deep Neural Networks
收藏 引用
IFAC-PapersOnLine 2024年 第15期58卷 253-258页
作者: Jonas Weigand Gerben I. Beintema Jonas Ulmen Daniel Görges Roland Tóth Maarten Schoukens Martin Ruskowski Chair of Machine Tools and Control Systems RPTU Kaiserslautern and the German Research Center for Artificial Intelligence Kaiserslautern Germany Control Systems (CS) Group at the Department of Electrical Engineering Eindhoven University of Technology Netherlands. R. Tóth is also affiliated to the Systems and Control Laboratory at the Institute for Computer Science and Control Budapest Hungary Institute for Electromobility RPTU Kaiserslautern Germany
The importance of proper data normalization for deep neural networks is well known. However, in continuous-time state-space model estimation, it has been observed that improper normalization of either the hidden state... 详细信息
来源: 评论
Bayesian Optimization for Building Social-Influence-Free Consensus
arXiv
收藏 引用
arXiv 2025年
作者: Adachi, Masaki Chau, Siu Lun Xu, Wenjie Singh, Anurag Osborne, Michael A. Muandet, Krikamol Machine Learning Research Group University of Oxford United Kingdom Toyota Motor Corporation Japan CISPA Helmholtz Center for Information Security Germany Automatic Control Laboratory EPFL Switzerland
We introduce Social Bayesian Optimization (SBO), a vote-efficient algorithm for consensus-building in collective decision-making. In contrast to single-agent scenarios, collective decision-making encompasses group dyn... 详细信息
来源: 评论
Method for Finding an Investment Strategy in the Case of a Sparse Covariance Matrix
Method for Finding an Investment Strategy in the Case of a S...
收藏 引用
International Conference on Management of Large-Scale System Development (MLSD)
作者: Victor Gorelik Tatiana Zolotova Department of Simulation Systems and Operations Research Federal Research Center “Computer Science and Control” of the Russian Academy of Sciences Moscow Russia Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation Moscow Russia
An optimality principle is proposed for making investment decisions based on efficiency and risk assessments with a sparse covariance matrix. The method is implemented as a program with a graphical interface and demon... 详细信息
来源: 评论
Improving generative model-based unfolding with Schrödinger bridges
收藏 引用
Physical Review D 2024年 第7期109卷 076011-076011页
作者: Sascha Diefenbacher Guan-Horng Liu Vinicius Mikuni Benjamin Nachman Weili Nie Physics Division Lawrence Berkeley National Laboratory Berkeley California 94720 USA Autonomous Control and Decision Systems Laboratory Georgia Institute of Technology Atlanta Georgia 30332 USA National Energy Research Scientific Computing Center Berkeley Lab Berkeley California 94720 USA Berkeley Institute for Data Science University of California Berkeley California 94720 USA Machine Learning Research Group NVIDIA Research
machine learning-based unfolding has enabled unbinned and high-dimensional differential cross section measurements. Two main approaches have emerged in this research area; one based on discriminative models and one ba... 详细信息
来源: 评论
Information Security control Engineering for an Industrial Company with “1C” Software
Information Security Control Engineering for an Industrial C...
收藏 引用
Electrical, Computer and Energy Technologies (ICECET), International Conference on
作者: Alexey Yu. Zalozhnev Dmitry V. Chistov Active Systems Laboratory V.A. Trapeznikov Institute of Control Sciences Russian Academy of Sciences Moscow Russia Department of Data Analysis and Machine Learning Financial University Moscow Russia
The issues related to information security control engineering for an industrial company with “1C” software are considered in this paper. The article discusses the types of threats to the company's information r...
来源: 评论
Effect of terahertz radiation on cells and cellular structures
收藏 引用
Frontiers of Optoelectronics 2025年 第1期18卷 21-51页
作者: A.P.Rytik V.V.Tuchin Institute of Physics Saratov State UniversitySaratov 410012Russia Science Medical Center Saratov State UniversitySaratov 410012Russia Laboratory of Laser Molecular Imaging and Machine Learning Tomsk State UniversityTomsk 634050Russia Institute of Precision Mechanics and Control Federal Research Center"Saratov Scientific Center of the Russian Academy of Sciences"Saratov 410012Russia
The paper presents the results of modern research on the effects of electromagnetic terahertz radiation in the frequency range 0.5-100 THz at different levels of power density and exposure time on the viability of nor... 详细信息
来源: 评论
State Derivative Normalization for Continuous-Time Deep Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Weigand, Jonas Beintema, Gerben I. Ulmen, Jonas Görges, Daniel Tóth, Roland Schoukens, Maarten Ruskowski, Martin Chair of Machine Tools and Control Systems RPTU Kaiserslautern The German Research Center for Artificial Intelligence Kaiserslautern Germany Group The Department of Electrical Engineering Eindhoven University of Technology Netherlands The Systems and Control Laboratory The Institute for Computer Science and Control Budapest Hungary Institute for Electromobility RPTU Kaiserslautern Germany
The importance of proper data normalization for deep neural networks is well known. However, in continuous-time state-space model estimation, it has been observed that improper normalization of either the hidden state... 详细信息
来源: 评论
A Preliminary Study on the Functional Coupling between Nerve and Blood Microcirculation for Applications in Rehabilitation Robots
A Preliminary Study on the Functional Coupling between Nerve...
收藏 引用
2023 IEEE International Conference on Robotics and Biomimetics, ROBIO 2023
作者: Li, Qingge Dong, Yuanzhe Zhang, Yuxiang Wang, Xin Jiang, Naifu Huang, Jianping Cui, Han Tian, Lan Zheng, Yue Li, Xiangxin Wang, Lin Li, Guanglin Liang, Wenyuan Peng, Liang Fang, Peng Shenzhen Institute of Advanced Technology Cas Key Laboratory of Human-Machine Intelligence-Synergy Systems Shenzhen518055 China University of Chinese Academy of Sciences Shenzhen College of Advanced Technology Shenzhen518055 China National Research Center for Rehabilitation Technical Aids Beijing100176 China Chinese Academy of Sciences State Key Laboratory of Management and Control for Complex Systems Institute of Automation Beijing100190 China
Rehabilitation robots play an important role in the motor function rehabilitation for stroke survivors with hemiplegia. However, the rehabilitation effect of current robots is still limited partly because a single tra...
来源: 评论
ActMAD: Activation Matching to Align Distributions for Test-Time-Training
ActMAD: Activation Matching to Align Distributions for Test-...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Jehanzeb Mirza Pol Jané Soneira Wei Lin Mateusz Kozinski Horst Possegger Horst Bischof Institute for Computer Graphics and Vision TU Graz Austria Christian Doppler Laboratory for Embedded Machine Learning Institute of Control Systems KIT Germany Christian Doppler Laboratory for Semantic 3D Computer Vision
Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Match...
来源: 评论