The importance of Model Predictive control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control ***,the complexity of the greenhouse and its limited prior knowledge...
详细信息
The importance of Model Predictive control(MPC)has significant applications in the agricultural industry,more specifically for greenhouse’s control ***,the complexity of the greenhouse and its limited prior knowledge prevent an exact mathematical description of the *** methods provide a promising solution to this issue through their capacity to identify the system’s comportment using the fit between model output and observed *** this paper,we introduce an application of Constrained Model Predictive control(CMPC)for a greenhouse temperature and relative *** this purpose,two Multi Input Single Output(MISO)systems,using Numerical Subspace State Space System Identification(N4SID)algorithm,are firstly suggested to identify the temperature and the relative humidity comportment to heating and ventilation *** this sense,linear state space models were adopted in order to evaluate the robustness of the control *** the system is identified,the MPC technique is applied for the temperature and the humidity *** results show that the regulation of the temperature and the relative humidity under constraints was guaranteed,both parameters respect the ranges 15℃≤T_(int)≤30℃and 50%≤H_(int)≤70%*** the other hand,the control signals uf and uh applied to the fan and the heater,respect the hard constraints notion,the control signals for the fan and the heater did not exceed 0≤uf≤4.3 Volts and 0≤uh≤5 Volts,respectively,which proves the effectiveness of the MPC and the tracking ***,we show that with the proposed technique,using a new optimization toolbox,the computational complexity has been significantly *** greenhouse in question is devoted to Schefflera Arboricola cultivation.
Trajectory planning method is a research hotspot in autonomous driving. Existing reinforcement learning-based trajectory planning methods suffer from unstable performance due to the strong randomness of network weight...
详细信息
Trajectory planning method is a research hotspot in autonomous driving. Existing reinforcement learning-based trajectory planning methods suffer from unstable performance due to the strong randomness of network weight parameter updates during the training process. Therefore, this paper proposes a novel trajectory planning method based on deep reinforcement learning trust region policy optimization (TRPO). Firstly, in order to enhance the robustness of the trajectory planning method based on deep reinforcement learning TRPO, a TRPO-LSTM based decision model was proposed. More specifically, a long short term memory (LSTM) based state feature extraction network was designed and embeded into a TRPO-based decision model to enhance the ability of TRPO to extract information from the environmental state space. Secondly, in order to make the planned trajectory adaptive to the dynamic changes of traffic environment, we presented a novel TRPO-LSTM trajectory fitting algorithm. To the best of our knowledge, this is the first work aiming at applying the TRPO-LSTM based decision model in the trajectory fitting process to search the optimal longitudinal trajectory speed. Finally, the proposed trajectory planning method was implemented and simulated on the CARLA simulator. The experimental results show that, compared with existing trajectory planning methods based on deep reinforcement learning algorithms, our proposed method achieves a cumulative reward improvement of over 28.9% in the scenario of four lane highway, and has better robustness. Meanwhile, the proposed method can achieve a lower collision rate of 0.93% while improving the average speed and comfort of vehicle driving. IEEE
Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order *** order to achieve the prior-given and user-defined co...
详细信息
Dear Editor,This letter is concerned with prescribed-time Nash equilibrium(PTNE)seeking problem in a pursuit-evasion game(PEG)involving agents with second-order *** order to achieve the prior-given and user-defined convergence time for the PEG,a PTNE seeking algorithm has been developed to facilitate collaboration among multiple pursuers for capturing the evader without the need for any global ***,it is theoretically proved that the prescribedtime convergence of the designed algorithm for achieving Nash equilibrium of ***,the effectiveness of the PTNE method was validated by numerical simulation results.A PEG consists of two groups of agents:evaders and *** pursuers aim to capture the evaders through cooperative efforts,while the evaders strive to evade *** is a classic noncooperative *** has attracted plenty of attention due to its wide application scenarios,such as smart grids[1],formation control[2],[3],and spacecraft rendezvous[4].It is noteworthy that most previous research on seeking the Nash equilibrium of the game,where no agent has an incentive to change its actions,has focused on asymptotic and exponential convergence[5]-[7].
Dear Editor,This letter focuses on leveraging the object information in images to improve the performance of the U-Net based change *** detection is fundamental to many computer vision *** existing solutions based on ...
详细信息
Dear Editor,This letter focuses on leveraging the object information in images to improve the performance of the U-Net based change *** detection is fundamental to many computer vision *** existing solutions based on deep neural networks are able to achieve impressive results.
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriv...
详细信息
This paper focuses on the performance of equalizer zero-determinant(ZD)strategies in discounted repeated Stackelberg asymmetric *** the leader-follower adversarial scenario,the strong Stackelberg equilibrium(SSE)deriving from the opponents’best response(BR),is technically the optimal strategy for the ***,computing an SSE strategy may be difficult since it needs to solve a mixed-integer program and has exponential complexity in the number of *** this end,the authors propose an equalizer ZD strategy,which can unilaterally restrict the opponent’s expected *** authors first study the existence of an equalizer ZD strategy with one-to-one situations,and analyze an upper bound of its performance with the baseline SSE *** the authors turn to multi-player models,where there exists one player adopting an equalizer ZD *** authors give bounds of the weighted sum of opponents’s utilities,and compare it with the SSE ***,the authors give simulations on unmanned aerial vehicles(UAVs)and the moving target defense(MTD)to verify the effectiveness of the proposed approach.
Quadrotors play a significant role in our lives and are transforming our *** cable-suspended loads is an unavoidable quadrotor application trend and a hot research topic in the control ***,the load swing and unpredict...
详细信息
Quadrotors play a significant role in our lives and are transforming our *** cable-suspended loads is an unavoidable quadrotor application trend and a hot research topic in the control ***,the load swing and unpredictability pose significant challenges to the quadrotor's *** this paper,an anti-swing controller with an inner-outer control strategy for the quadrotor-slung load transportation system is *** facilitate the controller design,the outer position dynamics are restructured in the form of ***,a virtual controller is created to force the underactuated states to the dynamic surface to ensure the position subsystem's *** improve robustness,an adaptive law is used to eliminate the effects of uncertain cable ***,a dynamic surface controller for the inner attitude subsystem is presented to drive the actual force to the virtual *** is demonstrated that the control strategy can stabilize the quadrotor despite mass and cable length *** results are provided to demonstrate the efficacy and durability of the proposed method.
Motion systems are a vital part of many industrial processes. However, meeting the increasingly stringent demands of these systems, especially concerning precision and throughput, requires novel control design methods...
详细信息
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous *** the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous...
详细信息
Dear Editor,This letter is concerned with visual perception closely related to heterogeneous *** the huge challenge brought by different image modalities,we propose a visual perception framework based on heterogeneous image knowledge,i.e.,the domain knowledge associated with specific vision tasks,to better address the corresponding visual perception problems.
Continuous-time (CT) modeling has proven to provide improved sample efficiency and interpretability in learning the dynamical behavior of physical systems compared to discrete-time (DT) models. However, even with nume...
详细信息
The treatise studies the temperature sensitivity of the optical transmission coefficient of an microoptoelectromechanical accelerometer (MOEMA) based on the optical tunneling effect in a temperature range from minus 4...
详细信息
暂无评论