作者:
GERSH, JRThe authoris a principal staff engineer at The Johns Hopkins University Applied Physics Laboratory
where he supervises the AAW Operations Section of the Combat Direction Group. Since joining JHU/APL in 1980 he has been involved in the specification development and testing of advanced surface combat direction systems specializing in the application of rule-based control mechanisms to command and control problems. In 1985-86 he chaired the Doctrine Working Group of the Naval Sea Systems Command's Combat Direction System Engineering Committee. Mr. Gersh served in the U.S. Navy from 1968 to 1977 as a sonar technician and as a junior officer (engineering and gunnery) aboard Atlantic Fleet frigates and as a member of the U.S. Naval Academy's Electrical Engineering faculty. He was educated at Harvard University and the Massachusetts Institute of Technology receiving S. B. S. M. and E. E. degrees in electrical engineering from the latter. He holds certificates as a commercial pilot and flight instructor and is a member of the U.S. Naval Institute the IEEE Computer Society and the American Association for Artificial Intelligence.
For the last four years the most advanced surface combat direction system (CDS) of the U.S. Navy has employed a limited knowledge-based control mechanism. Implemented in the Aegis Weapon System's command and decis...
详细信息
For the last four years the most advanced surface combat direction system (CDS) of the U.S. Navy has employed a limited knowledge-based control mechanism. Implemented in the Aegis Weapon System's command and decision element, this capability is called control by doctrine, and is a foundation for the Ticonderoga class cruisers' exceptional performance. control by doctrine allows CIC personnel to direct that certain CDS functions be performed automatically upon tracks with specified characteristics. In effect, these CDS functions, from identification to engagement, can now be controlled through the specification and activation of general system response rules rather than by individual operator actions. The set of active rules, called doctrine statements, forms a system knowledge-base. The Advanced Combat Direction System, Block 1, successor to today's Naval Tactical Data System, will also employ control by doctrine. As part of a larger effort investigating Aegis/ACDS commonality issues, a Doctrine Working Group was chartered to consider, among other things, implications for force-wide interoperability of multiple systems with such rule-based control mechanisms. The working group produced a set of design objectives for doctrine statement standardization across CDSs. Principal features of these objectives are described. The prospect of several such ships operating together in a battle group has raised questions as to the methods by which the actions of ships with those doctrinally-automated systems can best be coordinated. Related questions deal with specific design features for the support of such coordinated action. Work is now being carried out to investigate these questions. Combat system automation through doctrine statements is only one kind of rule-based control. Much work in the area of artificial intelligence deals with the use and maintenance of complex systems of rules, usually in non-real-time problem solving applications. Such systems are just now beginning
This paper describes a computer integrated engineering system for design and life cycle management of weapons systems, ships and other multidisciplined systems. All engineering data are stored in a central engineering...
详细信息
This paper describes a computer integrated engineering system for design and life cycle management of weapons systems, ships and other multidisciplined systems. All engineering data are stored in a central engineering database. Individual application databases define and process information necessary for specific discipline evaluations. Interface modules between the application databases and the engineering database ensure that the entered data are complete, consistent, compatible, and in compliance with requirements. Conflicts are immediately identified and efficiently resolved. Implementation of the system improves design quality and reduces costs by minimizing the number of design iterations, reducing the effort to implement changes, providing effective storage and retrieval, and reducing the need for ship checks prior to modifications and alterations.
In this paper, two theorems are quoted which, when applied together, provide much information about the robustness of adaptive control schemes. From these two theorems, another theorem is developed which can explain w...
详细信息
In this paper, two theorems are quoted which, when applied together, provide much information about the robustness of adaptive control schemes. From these two theorems, another theorem is developed which can explain why adaptive controllers can perform robustly in certain practical situations, while possibly failing in other situations. In particular, if the bandwidth constraints on a controlsystems are lenient enough to allow the use of a sampling frequency which is smaller than the frequency at which unstructured uncertainty becomes significant, an adaptive controller can behave robustly. Many, if not all, of the applications of adaptive control which have been successful employ relatively slow sampling of the process. Thus, the results of this paper provide a theoretical explanation of how certain adaptive controllers are performing robustly in practice. In addition, the final theorem is of a form which provides insight into what a priori knowledge is required to achieve robust adaptive control and how this knowledge say be used.
作者:
BULL, DNDaniel N. Bull
Ph.D. is a consultant in fermentation technology and president of Satori Corporation P.O. Box 1730 Montclair N.J. 07042. (201) 783-9787.REFERENCES Graff G.M. Short H. and Keene J.1983. Gene-splicing methods move from lab to plant. Chem. Eng.90: 22-27.|ISI|Broda P.1979. p. 1-3. Plasmids. W. H. Freeman Oxford and San Francisco.Donoghue D.J. and Sharp P.A.1978. Construction of a hybrid bacteriophage-plasmid recombinant DNA vector. J. Bact.136: 1192-1196.|PubMed|ISI|ChemPort|Bok S.H. Hoppe D. Mueller D.C. and Lee S.E.1983. Improving the production of recombinant DNA proteins through fermentation development. Abstract from 186th ACS Natl. Mtg. Washington D.C. Sept. 1.Maniatis T. Fritsch E.F. and Sam-brook J.1982. p. 88. Molecular Cloning. Cold Spring Harbor Laboratory. Guidelines for research involving recombinant DNA molecules June 1983
Fed. Reg.48: 24556-24581. Modifications of physical containment recommendations for large-scale uses of organisms containing recombinant DNA molecules. 1983. Recomb. DNA Tech. Bull.6: 69-70.Bull D.N. Thoma R.W. and Stinnett T.E.1983. Bioreactors for submerged culture. In:Adv. in Biotechnological Proc. A. Mizrahi and A. L. van Wezel (eds.) 1: 1-30.Schmidli B.L. and Swartz R.W.1982. Design considerations for aseptic fermentation. Presentation at 184th ACS Natl. Mtg. Kanas City MO.Sittig W.1982. The present state of fermentation reactors. J. Chem. Tech. Biotechnol.32: 47-58.|ISI|Strek F.1963. Intl. Chem. Eng.3: 533.Uhl V.W. and Gray J.B.1996. Mixing Theory and Practice Vol. I. Academic Press New York.Peters M.S. and Timmerhaus K.D.1968. p. 542. Plant Design and Economics for Chemical Engineers. McGraw-Hill New York.Dickey D.S. and Hicks R.W. Fundamentals of agitation. Chem. Eng.83: 93-100.Oldshue J.Y.1983. Fluid mixing technology and practice. Chem. Eng.90: 82-108.Kipke K.D.1981. Heat transfer in aerated non-Newtonian fluids. Abstract from 2nd Eur. Cong. Biotech. Eastbourne UK April 5-10.Blakebrough N. McM
This paper describes an evolving Arithmetic Design System (ADS) to support the quantitative evaluation of alternate number systems with respect to a given application and realization technology. A finite number system...
详细信息
This paper describes an evolving Arithmetic Design System (ADS) to support the quantitative evaluation of alternate number systems with respect to a given application and realization technology. In computer arithmetic...
详细信息
This paper describes an evolving Arithmetic Design System (ADS) to support the quantitative evaluation of alternate number systems with respect to a given application and realization technology. In computer arithmetic we are concerned with establishing a correspondence between abstract quantities (numbers) and some physical representation (symbols), and with simulating the operations on these symbols. The ADS is intended to help study the cost and performance of alternate simulations. A finite number system is a triple consisting of a symbol set (elements are called "digit-vectors"), an interpretation set, a mapping between these two sets, and a set of operators (digit-vector algorithms) defined on its symbol set. A set of these digit vector algorithms are proposed for conducting arithmetic design. A number system matrix defines the digit vector algorithm for numerous number systems and a method for computing time and space complexity of compositions of these algorithms is proposed. An example of how the system could be used to compare addition, with and without overflow detection, for three number systems is given.
作者:
RESNER, MEKLOMPARENS, SHLYNCH, JPMr. Michael E. Resner:received an Engineering Degree from Texas A&M University in 1966 and has done graduate work in management at American University. He is Director
Machinery Arrangements/Control Systems and Industrial Facilities Division (SEA 525) at the Naval Sea Systems Command. His previous positions have included Program Manager Solar Total Energy Program at the Department of Energy and Branch Chief Machinery Control Systems Branch at the Naval Ship Engineering Center. Mr. Stephen H. Klomparens:is a Naval Architect at Designers & Planners
Inc. and is engaged in development of computer aids for ship design. He received his B.S.E. degree in Naval Architecture and Marine Engineering from the University of Michigan in 1973 and his M.S. degree in Computer Science from the Johns Hopkins University. Mr. Kolmparens began his professional career at Hydronautics Inc. in 1974 where he was involved in the use of marine laboratory facilities for test and development of conventional and advanced marine craft. Since 1977 he has been involved with naval and commercial ship design and with development of computer-aided ship design tools. Mr. John P. Lynch:is a Principal Marine Engineer with Hydronautics
Inc. He was previously employed in the auxiliary machinery and computer-aided design divisions of the David W. Taylor Naval Ship R&D Center the machinery design division of the New York Naval Shipyard and the machinery arrangement code of the Bureau of Ships. His active naval service was as a ship superintendent in the production department of the Long Beach Naval Shipyard. Mr. Lynch received his B. S. degree in Marine Engineering from the New York State Maritime College and his M.S. degree in Mechanical Engineering from Columbia University. He is a licensed Professional Engineer in the State of New York and a member of ASNE.
The machinery arrangement design process has remained relatively unchanged over the years. Recently, external demands have been placed on both the product and the producers that call for changes to this process. This ...
The machinery arrangement design process has remained relatively unchanged over the years. Recently, external demands have been placed on both the product and the producers that call for changes to this process. This paper cites these external demands and traces the evolution of the process changes from the rule-of-thumb machinery box sizing routines up to the current automated procedures. The machinery arrangement design practice is presented, and existing analytic and graphics aids are discussed. The user requirements for improved design aids are presented, with implementation guidelines and hardware/software alternatives.
作者:
CAMPBELL, JSTHE AUTHOR was born in Porterville. Calif.
in 1928 and joined the U.S. Nary in 1945 in the “Aviation Midshipman” Program. He received his designation as a Naval Aviator in 1950 and flew combat missions in Korea while still a Midshipman followed by participation in various operational and training squadrons until 1958 when he completed the Naval Test Pilot School Program. After a tour as an Engineering Test Pilot. he attended the Naval Postgraduate School Monterey. Calif. and was then assigned to the Fleet Computer Programming Center as a part of the NTDS development. Later he had operational tours as CIC Officer in the USS Enterprise and as AAW Officer on the Staff of Commander Task Force SEVENTY-SEVEN in Vietnam. During an interceding tour of duty he was the Program Manager for the TACDEW Training Facilities at San Diego Calif: and Dam Neck Va. After completing his active duty in the U.S. Navy Mr. Campbell joined Logicon Inc. and during the six years with the Tactical and Training Systems Division held various positions including Project Manager Department Head Assistant Director and Division Director prior to leaving in 1976 to join the Assistant Secretary of the Nary for R&D as Special Assistant for Weapons Systems Integration. In 1978 he joined the Staff at the Naval Ocean Systems Center as Associate Director for Command Control and Communications and Acting Head of the C3I Systems Department where he is charged with the development and operation of the C3Systems Integration Test and Evaluation Laboratory.
The increasingly important role of land-based test sites (LBTSs) in military command, control, and communications (C 3 ) is discussed, with particular reference to system integration, R&D, and testing. The LBTS at...
The increasingly important role of land-based test sites (LBTSs) in military command, control, and communications (C 3 ) is discussed, with particular reference to system integration, R&D, and testing. The LBTS at the Naval Ocean systems Center (NOSC), San Diego, is described in detail, and lessons learned from the operation of the and other LBTSe are considered in terms of both their tactical and strategic implications.
暂无评论