This paper considers the problem of constructing finite-dimensional state space realizations for stochastic processes that can be represented as the outputs of a certain type of a causal system driven by a continuous ...
详细信息
Both the search for extraterrestrial intelligence (SETI) and messaging extraterrestrial intelligence (METI) struggle with a strong indeterminacy in what data to look for and when to do so. This has led to attempts at ...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the ...
详细信息
While spin-orbit interaction has been extensively studied,few investigations have reported on the interaction between orbital angular momenta(OAMs).In this work,we study a new type of orbit-orbit coupling between the longitudinal OAM and the transverse OAM carried by a three-dimensional(3D)spatiotemporal optical vortex(STOV)in the process of tight *** 3D STOV possesses orthogonal OAMs in the x-y,t-x,and y-t planes,and is preconditioned to overcome the spatiotemporal astigmatism effect.x,y,and t are the axes in the spatiotemporal *** corresponding focused wavepacket is calculated by employing the Debye diffraction theory,showing that a phase singularity ring is generated by the interactions among the transverse and longitudinal vortices in the highly confined *** Fourier-transform decomposition of the Debye integral is employed to analyze the mechanism of the orbit-orbit *** is the first revelation of coupling between the longitudinal OAM and the transverse OAM,paving the way for potential applications in optical trapping,laser machining,nonlinear light-matter interactions,and more.
The majorizing measure theorem of Fernique and Talagrand is a fundamental result in the theory of random processes. It relates the boundedness of random processes indexed by elements of a metric space to complexity me...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)ar...
详细信息
Exploration strategy design is a challenging problem in reinforcement learning(RL),especially when the environment contains a large state space or sparse *** exploration,the agent tries to discover unexplored(novel)areas or high reward(quality)*** existing methods perform exploration by only utilizing the novelty of *** novelty and quality in the neighboring area of the current state have not been well utilized to simultaneously guide the agent’s *** address this problem,this paper proposes a novel RL framework,called clustered reinforcement learning(CRL),for efficient exploration in *** adopts clustering to divide the collected states into several clusters,based on which a bonus reward reflecting both novelty and quality in the neighboring area(cluster)of the current state is given to the *** leverages these bonus rewards to guide the agent to perform efficient ***,CRL can be combined with existing exploration strategies to improve their performance,as the bonus rewards employed by these existing exploration strategies solely capture the novelty of *** on four continuous control tasks and six hard-exploration Atari-2600 games show that our method can outperform other state-of-the-art methods to achieve the best performance.
This paper presents a general methodology for deriving information-theoretic generalization bounds for learning algorithms. The main technical tool is a probabilistic decorrelation lemma based on a change of measure a...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,...
详细信息
Optoelectronic devices are advantageous in in-memory light sensing for visual information processing,recognition,and storage in an energy-efficient ***,in-memory light sensors have been proposed to improve the energy,area,and time efficiencies of neuromorphic computing *** study is primarily focused on the development of a single sensing-storage-processing node based on a two-terminal solution-processable MoS2 metal-oxide-semiconductor(MOS)charge-trapping memory structure—the basic structure for charge-coupled devices(CCD)—and showing its suitability for in-memory light sensing and artificial visual *** memory window of the device increased from 2.8 V to more than 6V when the device was irradiated with optical lights of different wavelengths during the program ***,the charge retention capability of the device at a high temperature(100 ℃)was enhanced from 36 to 64%when exposed to a light wavelength of 400 *** larger shift in the threshold voltage with an increasing operating voltage confirmed that more charges were trapped at the Al_(2)O_(3)/MoS_(2) interface and in the MoS_(2) layer.A small convolutional neural network was proposed to measure the optical sensing and electrical programming abilities of the *** array simulation received optical images transmitted using a blue light wavelength and performed inference computation to process and recognize the images with 91%*** study is a significant step toward the development of optoelectronic MOS memory devices for neuromorphic visual perception,adaptive parallel processing networks for in-memory light sensing,and smart CCD cameras with artificial visual perception capabilities.
Effective real-time monitoring and analysis of distributed grids necessitate the use of synchro-waveform measurements, which capture almost all high-frequency disturbances and transient phenomena. However, due to limi...
详细信息
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1...
详细信息
Despite the effectiveness of vision-language supervised fine-tuning in enhancing the performance of vision large language models(VLLMs), existing visual instruction tuning datasets include the following limitations.(1) Instruction annotation quality: despite existing VLLMs exhibiting strong performance,instructions generated by those advanced VLLMs may still suffer from inaccuracies, such as hallucinations.(2) Instructions and image diversity: the limited range of instruction types and the lack of diversity in image data may impact the model's ability to generate diversified and closer to real-world scenarios outputs. To address these challenges, we construct a high-quality, diverse visual instruction tuning dataset MMInstruct,which consists of 973k instructions from 24 domains. There are four instruction types: judgment, multiplechoice, long visual question answering, and short visual question answering. To construct MMInstruct, we propose an instruction generation data engine that leverages GPT-4V, GPT-3.5, and manual correction. Our instruction generation engine enables semi-automatic, low-cost, and multi-domain instruction generation at 1/6 the cost of manual construction. Through extensive experiment validation and ablation experiments,we demonstrate that MMInstruct could significantly improve the performance of VLLMs, e.g., the model fine-tuning on MMInstruct achieves new state-of-the-art performance on 10 out of 12 benchmarks. The code and data shall be available at https://***/yuecao0119/MMInstruct.
暂无评论