咨询与建议

限定检索结果

文献类型

  • 355 篇 期刊文献
  • 85 篇 会议
  • 1 册 图书

馆藏范围

  • 441 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 259 篇 理学
    • 163 篇 物理学
    • 59 篇 生物学
    • 31 篇 数学
    • 13 篇 统计学(可授理学、...
    • 12 篇 化学
    • 10 篇 天文学
    • 9 篇 地球物理学
    • 8 篇 系统科学
  • 211 篇 工学
    • 106 篇 计算机科学与技术...
    • 91 篇 软件工程
    • 46 篇 生物医学工程(可授...
    • 40 篇 光学工程
    • 38 篇 生物工程
    • 29 篇 电气工程
    • 29 篇 信息与通信工程
    • 25 篇 核科学与技术
    • 20 篇 电子科学与技术(可...
    • 14 篇 机械工程
    • 13 篇 化学工程与技术
    • 11 篇 仪器科学与技术
    • 8 篇 控制科学与工程
    • 7 篇 材料科学与工程(可...
  • 76 篇 医学
    • 60 篇 临床医学
    • 49 篇 基础医学(可授医学...
    • 29 篇 公共卫生与预防医...
    • 22 篇 药学(可授医学、理...
  • 37 篇 管理学
    • 17 篇 管理科学与工程(可...
    • 16 篇 图书情报与档案管...
    • 12 篇 工商管理
    • 7 篇 公共管理
  • 11 篇 农学
  • 6 篇 法学
  • 6 篇 教育学
  • 5 篇 文学
  • 3 篇 经济学

主题

  • 18 篇 higgs bosons
  • 18 篇 hadron colliders
  • 14 篇 relativistic hea...
  • 12 篇 hadron-hadron in...
  • 12 篇 top quark
  • 10 篇 supersymmetric m...
  • 8 篇 superpartners
  • 7 篇 electroweak inte...
  • 7 篇 proton-proton in...
  • 7 篇 particle product...
  • 7 篇 photons
  • 7 篇 feature extracti...
  • 7 篇 machine learning
  • 7 篇 particle correla...
  • 7 篇 quark & gluon je...
  • 6 篇 standard model (...
  • 6 篇 particle interac...
  • 6 篇 particle data an...
  • 5 篇 w & z bosons
  • 5 篇 collisions (nucl...

机构

  • 89 篇 dipartimento di ...
  • 80 篇 faculty of scien...
  • 79 篇 department of ph...
  • 79 篇 departamento de ...
  • 78 篇 department for p...
  • 78 篇 department of ph...
  • 77 篇 department of ph...
  • 77 篇 dipartimento di ...
  • 77 篇 yerevan physics ...
  • 75 篇 faculté des scie...
  • 75 篇 department of ph...
  • 75 篇 department of ph...
  • 75 篇 graduate school ...
  • 74 篇 kirchhoff-instit...
  • 73 篇 fakultät für phy...
  • 72 篇 institute of phy...
  • 71 篇 centre de calcul...
  • 70 篇 department of ph...
  • 70 篇 institut für ast...
  • 68 篇 institute of phy...

作者

  • 76 篇 c. alexa
  • 76 篇 g. bella
  • 76 篇 d. calvet
  • 76 篇 c. amelung
  • 75 篇 f. buehrer
  • 75 篇 a. t. law
  • 75 篇 j. m. izen
  • 75 篇 s. veneziano
  • 75 篇 d. di valentino
  • 75 篇 j. strandberg
  • 75 篇 n. orlando
  • 75 篇 c. gumpert
  • 75 篇 h. a. gordon
  • 75 篇 y. tayalati
  • 75 篇 g. spigo
  • 75 篇 v. chiarella
  • 75 篇 f. siegert
  • 75 篇 a. c. könig
  • 75 篇 a. dimitrievska
  • 75 篇 f. deliot

语言

  • 417 篇 英文
  • 18 篇 其他
  • 5 篇 中文
  • 1 篇 德文
  • 1 篇 日文
检索条件"机构=Data & Software Engineering Research Division School of Electrical Engineering and Informatics"
441 条 记 录,以下是41-50 订阅
排序:
Automatic liver-vessel examination from CT slice using Kapur’s thresholding and watershed algorithm
收藏 引用
Procedia Computer Science 2024年 235卷 1824-1831页
作者: Seifedine Kadry Laith Abualigah Rubén González Crespo Elena Verdú Robertas Damasevicius Vijendra Singh Venkatesan Rajinikanth Department of Applied Data Science Noroff University College Kristiansand Norway Artificial Intelligence Research Center (AIRC) Ajman University Ajman 346 United Arab Emirates Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon Computer Science Department Al al-Bayt University Mafraq 25113 Jordan Hourani Center for Applied Scientific Research Al-Ahliyya Amman University Amman 19328 Jordan MEU Research Unit Middle East University Amman 11831 Jordan School of Computer Sciences Universiti Sains Malaysia Pulau Pinang 11800 Malaysia School of Engineering and Technology Sunway University Malaysia Petaling Jaya 27500 Malaysia Higher School of Engineering and Technology Universidad Internacional de La Rioja Logroño 26006 Spain Department of Applied Informatics Vytautas Magnus University 53361 Kaunas Lithuania School of Computer Science University of Petroleum and Energy Studies Dehradun 248007 India Department of Computer Science and Engineering Division of Research and Innovation Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences Chennai 602105 India
Computerized medical image examination (CMIE) plays a significant role in modern hospitals to achieve the necessary tasks, like segmentation and classification. By segmenting an image, we can extract a particular sect... 详细信息
来源: 评论
Improving Generalization of Metric Learning via Listwise Self-distillation
arXiv
收藏 引用
arXiv 2022年
作者: Zeng, Zelong Yang, Fan Wang, Zheng Satoh, Shin'ichi The Department of Information and Communication Engineering Graduate School of Information Science and Technology The University of Tokyo Japan The Digital Content and Media Sciences Research Division National Institute of Informatics Japan The School of Computer Science National Engineering Research Center for Multimedia Software Wuhan University China
Most deep metric learning (DML) methods employ a strategy that forces all positive samples to be close in the embedding space while keeping them away from negative ones. However, such a strategy ignores the internal r... 详细信息
来源: 评论
Geo-Localization via Ground-to-Satellite Cross-View Image Retrieval
arXiv
收藏 引用
arXiv 2022年
作者: Zeng, Zelong Wang, Zheng Yang, Fan Satoh, Shin'ichi The School of Computer Science National Engineering Research Center for Multimedia Software Wuhan University China The Department of Information and Communication Engineering Graduate School of Information Science and Technology The University of Tokyo Japan The Digital Content and Media Sciences Research Division National Institute of Informatics Japan
The large variation of viewpoint and irrelevant content around the target always hinder accurate image retrieval and its subsequent tasks. In this paper, we investigate an extremely challenging task: given a ground-vi... 详细信息
来源: 评论
A Novel Framework for Learning and Classifying the Imbalanced Multi-Label data
收藏 引用
Computer Systems Science & engineering 2024年 第5期48卷 1367-1385页
作者: P.K.A.Chitra S.Appavu alias Balamurugan S.Geetha Seifedine Kadry Jungeun Kim Keejun Han Department of Computer Science and Engineering SRM Institute of Science and TechnologyTiruchirappalliTamil Nadu603203India Department of Computer Science and Engineering Periyar Maniammai Institute of Science&Technology(Deemed to be University)ThanjavurTamil Nadu613403India School of Computer Science and Engineering ChennaiTamil Nadu600048India Department of Applied Data Science Noroff University CollegeKristiansand4612Norway Artificial Intelligence Research Center(AIRC) College of Engineering and Information TechnologyAjman UniversityP.O.Box 346AjmanUnited Arab Emirates Department of Electrical and Computer Engineering Lebanese American UniversityByblos10150Lebanon Department of Software Kongju National UniversityCheonan31080Republic of Korea Division of Computer Engineering Hansung UniversitySeoul02876Republic of Korea
A generalization of supervised single-label learning based on the assumption that each sample in a dataset may belong to more than one class simultaneously is called multi-label *** main objective of this work is to c... 详细信息
来源: 评论
A Lightweight and Robust Access Control Protocol for IoT-based e-Healthcare Network
收藏 引用
IEEE Transactions on Mobile Computing 2025年
作者: Ghaffar, Zahid Kuo, Wen-Chung Mahmood, Khalid Tariq, Tayyaba Shamshad, Salman Das, Ashok Kumar Alenazi, Mohammed J.F. National Yunlin University of Science and Technology Graduate School of Engineering Science and Technology Douliu64002 Taiwan National Yunlin University of Science and Technology Department of Computer Science and Information Engineering Douliu64002 Taiwan National Yunlin University of Science and Technology Graduate School of Intelligent Data Science Douliu64002 Taiwan The University of Lahore Department of Software Engineering Lahore54590 Pakistan International Institute of Information Technology Center for Security Theory and Algorithmic Research Hyderabad500 032 India Korea University Department of Computer Science and Engineering College of Informatics 145 Anam-ro Seongbuk-gu Seoul02841 Korea Republic of King Saud University College of Computer and Information Sciences Department of Computer Engineering Riyadh Saudi Arabia
Internet of Things (IoT) devices are crucial components in e-healthcare networks. It enables remote patient health monitoring and facilitates seamless communication among medical sensors, wearable devices, and healthc... 详细信息
来源: 评论
Is larger always better? Evaluating and prompting large language models for non-generative medical tasks
arXiv
收藏 引用
arXiv 2024年
作者: Zhu, Yinghao Gao, Junyi Wang, Zixiang Liao, Weibin Zheng, Xiaochen Liang, Lifang Wang, Yasha Pan, Chengwei Harrison, Ewen M. Ma, Liantao Institute of Artificial Intelligence Beihang University Beijing100191 China Centre for Medical Informatics University of Edinburgh EdinburghEH8 9YL United Kingdom Health Data Research UK United Kingdom School of Computer Science Peking University Beijing100871 China National Engineering Research Center for Software Engineering Peking University Beijing100871 China ETH Zürich Zürich8092 Switzerland
Background: The deployment of Large Language Models (LLMs) in medical fields is increasing, but few research evaluate their ability to manage both structured Electronic Health Record (EHR) data and unstructured clinic... 详细信息
来源: 评论
Flip Learning: Weakly Supervised Erase to Segment Nodules in Breast Ultrasound
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Yuhao Chang, Ao Dou, Haoran Tao, Xing Zhou, Xinrui Cao, Yan Huang, Ruobing Frangi, Alejandro F. Bao, Lingyun Yang, Xin Ni, Dong National-Regional Key Technology Engineering Laboratory for Medical Ultrasound School of Biomedical Engineering Shenzhen University Medical School Shenzhen University Shenzhen China Lab Shenzhen University Shenzhen China Marshall Laboratory of Biomedical Engineering Shenzhen University Shenzhen China School of Computing University of Leeds Leeds United Kingdom Shenzhen RayShape Medical Technology Co. Ltd Shenzhen China Division of Informatics Imaging and Data Science School of Health Sciences University of Manchester Manchester United Kingdom Department of Computer Science School of Engineering University of Manchester Manchester United Kingdom Department of Electrical Engineering Department of Cardiovascular Sciences KU Leuven Belgium Alan Turing Institute London United Kingdom NIHR Manchester Biomedical Research Centre Manchester Academic Health Science Centre Manchester United Kingdom Department of Ultrasound Affiliated Hangzhou First People’s Hospital School of Medicine Westlake University China School of Biomedical Engineering and Informatics Nanjing Medical University Nanjing China
Accurate segmentation of nodules in both 2D breast ultrasound (BUS) and 3D automated breast ultrasound (ABUS) is crucial for clinical diagnosis and treatment planning. Therefore, developing an automated system for nod... 详细信息
来源: 评论
Simultaneous Super-Resolution and Denoising on MRI via Conditional Stochastic Normalizing Flow
Simultaneous Super-Resolution and Denoising on MRI via Condi...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Zhenhong Liu Xingce Wang Zhongke Wu Yi-Cheng Zhu Alejandro F. Frangi School of Artificial Intelligence Beijing Normal University Beijing China Department of Neurology Peking Union Medical College Hospital Beijing China Division of Informatics Imaging and Data Sciences School of Health Sciences Christabel Pankhurst Institute Department of Computer Science School of Engineering The University of Manchester UK Department of Cardiovascular Sciences Medical Imaging Research Centre (MIRC) Department of Electrical Engineering KU Leuven Leuven Belgium lan Turing Institute London UK
Magnetic resonance imaging (MRI) scans often suffer from noise and low-resolution (LR), which affect the diagnosis and treatment results obtained for patients. LR images and noise come together with MRI, and the exist...
来源: 评论
Domain-invariant Clinical Representation Learning by Bridging data Distribution Shift across EMR datasets
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Zhongji Wang, Yuhang Zhu, Yinghao Ma, Xinyu Wang, Yasha Gao, Junyi Ma, Liantao Tang, Wen Zhang, Xiaoyun Wang, Ling Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University Jiangsu China Peking University School Hospital of Stomatology Beijing China National Engineering Research Center for Software Engineering Peking University Beijing China Peking University Third Hospital Beijing China Key Laboratory of High Confidence Software Technologies Ministry of Education Beijing China Centre for Medical Informatics University of Edinburgh Edinburgh United Kingdom Health Data Research UK United Kingdom
Emerging diseases present challenges in symptom recognition and timely clinical intervention due to limited available information. An effective prognostic model could assist physicians in making accurate diagnoses and... 详细信息
来源: 评论
Synthesising 3D Cardiac CINE-MR Images and Corresponding Segmentation Masks using a Latent Diffusion Model
Synthesising 3D Cardiac CINE-MR Images and Corresponding Seg...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Nina Cheng Zhengji Liu Yash Deo Haoran Dou Ning Bi Kun Wu Fengming Lin Zeike A Taylor Nishant Ravikumar Alejandro F Frangi CISTIB Centre for Computational Imaging and Simulation Technologies in Biomedicine University of Leeds School of Optometry The Hong Kong Polytechnic University NIHR Leeds Biomedical Research Centre Leeds UK Alan Turing Institute London UK Division of Informatics Imaging and Data Science Schools of Computer Science and Health Sciences University of Manchester Manchester UK Cardiovascular Sciences Departments Medical Imaging Research Center (MIRC) Electrical Engineering KU Leuven Leuven Belgium
We propose a novel pipeline for the generation of synthetic full spatial cine cardiac magnetic resonance (CMR) images via a latent Denoising Diffusion Implicit Models (DDIMs). These synthetic images can be used as via... 详细信息
来源: 评论