咨询与建议

限定检索结果

文献类型

  • 111 篇 期刊文献
  • 89 篇 会议

馆藏范围

  • 200 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 117 篇 工学
    • 72 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 19 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 18 篇 生物工程
    • 16 篇 光学工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 力学(可授工学、理...
    • 5 篇 机械工程
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
  • 116 篇 理学
    • 70 篇 数学
    • 44 篇 统计学(可授理学、...
    • 38 篇 物理学
    • 23 篇 地球物理学
    • 19 篇 生物学
    • 12 篇 系统科学
    • 7 篇 化学
  • 39 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 19 篇 图书情报与档案管...
    • 12 篇 工商管理
  • 15 篇 医学
    • 14 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
    • 5 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 6 篇 农学
  • 1 篇 教育学

主题

  • 9 篇 galaxies
  • 7 篇 machine learning
  • 6 篇 deep learning
  • 6 篇 cosmology
  • 6 篇 feature extracti...
  • 5 篇 forecasting
  • 5 篇 training
  • 4 篇 surveys
  • 4 篇 image segmentati...
  • 4 篇 neural networks
  • 4 篇 accuracy
  • 4 篇 sensors
  • 3 篇 task analysis
  • 3 篇 probability dist...
  • 3 篇 stars
  • 3 篇 convolution
  • 3 篇 predictive model...
  • 3 篇 decision making
  • 3 篇 time series
  • 3 篇 embeddings

机构

  • 19 篇 department of da...
  • 18 篇 financial univer...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 12 篇 ciela - montreal...
  • 11 篇 center for compu...
  • 10 篇 department of st...
  • 9 篇 national enginee...
  • 9 篇 center for machi...
  • 9 篇 center for data ...
  • 8 篇 department of hi...
  • 7 篇 peking universit...
  • 7 篇 department of ph...
  • 7 篇 beijing internat...
  • 7 篇 mila - quebec ar...
  • 6 篇 department of da...
  • 6 篇 department of ph...
  • 6 篇 v.a. trapeznikov...
  • 5 篇 lab crestview ra...
  • 5 篇 department of da...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 andriyanov nikit...
  • 11 篇 hezaveh yashar
  • 10 篇 perreault-levass...
  • 7 篇 hüllermeier eyke
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 waegeman willem
  • 7 篇 bin dong
  • 6 篇 li hongwei bran
  • 6 篇 zifan chen
  • 6 篇 lemos pablo
  • 6 篇 legin ronan
  • 6 篇 pasquato mario
  • 5 篇 bakas spyridon
  • 5 篇 wang chunhao
  • 5 篇 kazerooni anahit...

语言

  • 189 篇 英文
  • 11 篇 其他
检索条件"机构=Data Analysis and Machine Learning"
200 条 记 录,以下是151-160 订阅
排序:
Hierarchical Bayesian approach for adaptive integration of Bragg peaks in time-of-flight neutron scattering data
arXiv
收藏 引用
arXiv 2024年
作者: Reshniak, Viktor Wang, Xiaoping Zhang, Guannan Liu, Siyan Yin, Junqi Data Analysis and Machine Learning Group Oak Ridge National Laboratory 1 Bethel Valley Rd Oak RidgeTN37830 United States Single Crystal Diffraction Oak Ridge National Laboratory 1 Bethel Valley Rd Oak RidgeTN37830 United States Computational Earth Sciences Group Oak Ridge National Laboratory 1 Bethel Valley Rd Oak RidgeTN37830 United States Analytics and AI Methods at Scale Oak Ridge National Laboratory 1 Bethel Valley Rd Oak RidgeTN37830 United States
The Spallation Neutron Source (SNS) at Oak Ridge National Laboratory (ORNL) operates in the event mode. Time-of-flight (TOF) information about each detected neutron is collected separately and saved as a descriptive e... 详细信息
来源: 评论
Feature extraction for hyperspectral imagery: The evolution from shallow to deep
arXiv
收藏 引用
arXiv 2020年
作者: Rasti, Behnood Hong, Danfeng Hang, Renlong Ghamisi, Pedram Kang, Xudong Chanussot, Jocelyn Benediktsson, Jon Atli Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany Univ. Grenoble Alpes CNRS Grenoble INP GIPSAlab Grenoble38000 France Jiangsu Key Laboratory of Big Data Analysis Technology School of Automation Nanjing University of Information Science and Technology Nanjing210044 China Machine Learning Group Exploration Division Helmholtz Institute Freiberg for Resource Technology Helmholtz-Zentrum Dresden-Rossendorf Freiberg09599 Germany College of Electrical and Information Engineering Hunan University Changsha410082 China Key Laboratory of Visual Perception and Artificial Intelligence of Hunan Province Changsha410082 China Univ. Grenoble Alpes Inria CNRS Grenoble INP LJK GrenobleF-38000 France Faculty of Electrical and Computer Engineering University of Iceland Reykjavik101 Iceland Faculty of Electrical and Computer Engineering University of Iceland Reykjavik107 Iceland
The final version of the paper can be found in IEEE Geoscience and Remote Sensing Magazine. Hyperspectral images provide detailed spectral information through hundreds of (narrow) spectral channels (also known as dime... 详细信息
来源: 评论
Neural networks and their application in forecasting problems
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1703卷
作者: V A Ivanyuk F F Pashchenko Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation 49 Leningradsky Prospekt 125993 Moscow Russia Department of Higher Mathematics Bauman Moscow State Technical University Moscow Russia V.A. Trapeznikov Institute of Control Sciences of RAS Moscow Russia
The report describes popular machine learning methods and applications of neural networks. It reveals methods of training neural networks and offers a method of forecasting based on neural networks for modelling finan...
来源: 评论
Forecasting the dynamics of financial time series based on neural networks
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1703卷
作者: V A Ivanyuk N M Abdikeev A D Tsvirkun Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation 49 Leningradsky Prospekt 125993 Moscow Russia Department of Higher Mathematics Bauman Moscow State Technical University Moscow Russia V.A. Trapeznikov Institute of Control Sciences of RAS Moscow Russia
Forecasting is one of the high-demand data mining problems, but also a very difficult one. The difficulties of forecasting are associated with insufficient quality and quantity of input data, the changes in the enviro...
来源: 评论
Ensemble forecasting method
收藏 引用
Journal of Physics: Conference Series 2020年 第1期1703卷
作者: V A Ivanyuk A D Tsvirkun Department of Data Analysis and Machine Learning Financial University under the Government of the Russian Federation 49 Leningradsky Prospekt 125993 Moscow Russia Department of Higher Mathematics Bauman Moscow State Technical University Moscow Russia V.A. Trapeznikov Institute of Control Sciences of RAS Moscow Russia
The purpose of this article is to analyze the time series based on aggregate forecasting methods. Forecasting time series comprises an important scientific and technical task which is relevant in various sectors of ec...
来源: 评论
The re-markable 21-cm power spectrum I: Probing the Hi distribution in the post-reionization era using marked statistics
arXiv
收藏 引用
arXiv 2024年
作者: Kamran, Mohd Sahlén, Martin Sarkar, Debanjan Majumdar, Suman Department of Physics and Astronomy Uppsala University Box 516 Uppsala751 20 Sweden Department of Physics Trottier Space Institute McGill University QCH3A 2T8 Canada Ciela-Montreal Institute for Astrophysical Data Analysis and Machine Learning QCH2V 0B3 Canada Department of Physics Ben-Gurion University of the Negev Be'er Sheva84105 Israel Department of Astronomy Astrophysics & Space Engineering Indian Institute of Technology Indore Indore453552 India Department of Physics Blackett Laboratory Imperial College LondonSW7 2AZ United Kingdom
The neutral hydrogen (Hi) power spectrum, measured from intensity fluctuations in the 21-cm background, offers insights into the large-scale structures (LSS) of our Universe in the post-reionization era (redshift z −1... 详细信息
来源: 评论
AstroPhot: Fitting Everything Everywhere All at Once in Astronomical Images
arXiv
收藏 引用
arXiv 2023年
作者: Stone, Connor J. Courteau, Stéphane Cuillandre, Jean-Charles Hezaveh, Yashar Perreault-Levasseur, Laurence Arora, Nikhil Department of Physics Université de Montréal MontréalQC Canada Mila - Québec Artificial Intelligence Institute MontréalQC Canada Ciela - Montréal Institute for Astrophysical Data Analysis and Machine Learning MontréalQC Canada Department of Physics Engineering Physics & Astronomy Queen’s University KingstonON Canada AIM CEA CNRS Université Paris-Saclay Université de Paris Gif-sur-YvetteF-91191 France Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States New York University Abu Dhabi PO Box 129188 Abu Dhabi United Arab Emirates New York University Abu Dhabi United Arab Emirates
We present ASTROPHOT, a fast, powerful, and user-friendly Python based astronomical image photometry solver. ASTROPHOT incorporates automatic differentiation and GPU (or parallel CPU) acceleration, powered by the mach... 详细信息
来源: 评论
A machine learning framework to generate star cluster realisations
arXiv
收藏 引用
arXiv 2024年
作者: Prodan, George P. Pasquato, Mario Iorio, Giuliano Ballone, Alessandro Torniamenti, Stefano Niccolò Di Carlo, Ugo Mapelli, Michela Dipartimento di Fisica e Astronomia Università di Padova Vicolo dell’Osservatorio 3 Padova35122 Italy IASF Milano via Alfonso Corti 12 Milano Italy Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada INFN–Padova Via Marzolo 8 Padova35131 Italy INAF Osservatorio Astronomico di Padova Vicolo dell’Osservatorio 5 Padova Italy Institut für Theoretische Astrophysik ZAH Universität Heidelberg Albert-Ueberle-Str. 2 Heidelberg69120 Germany SISSA - Scuola Internazionale Superiore di Studi Avanzati via Bonomea 365 TriesteI-34136 Italy Faculty of Sciences University of Craiova A.I. Cuza 13 Craiova200585 Romania
Context. Computational astronomy has reached the stage where running a gravitational N-body simulation of a stellar system, such as a Milky Way star cluster, is computationally feasible, but a major limiting factor th... 详细信息
来源: 评论
Posterior Sampling of the Initial Conditions of the Universe from Non-linear Large Scale Structures using Score-Based Generative Models
arXiv
收藏 引用
arXiv 2023年
作者: Legin, Ronan Ho, Matthew Lemos, Pablo Perreault-Levasseur, Laurence Ho, Shirley Hezaveh, Yashar Wandelt, Benjamin Department of Physics Université de Montréal Montréal Canada Mila - Quebec Artificial Intelligence Institute Montréal Canada Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Sorbonne Université CNRS UMR 7095 Institut d’Astrophysique de Paris 98 bis bd Arago Paris75014 France Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Perimeter Institute for Theoretical Physics WaterlooONN2L 2Y5 Canada Sorbonne Université Institut Lagrange de Paris 98 bis boulevard Arago Paris75014 France
Reconstructing the initial conditions of the universe is a key problem in cosmology. Methods based on simulating the forward evolution of the universe have provided a way to infer initial conditions consistent with pr... 详细信息
来源: 评论
The Cosmic Microwave Background and H0
arXiv
收藏 引用
arXiv 2023年
作者: Lemos, Pablo Shah, Paul Mila - Quebec Artificial Intelligence Institute Montréal 6666 Rue Saint-Urbain QCH2S 3H1 Canada Department of Physics Université de Montréal Montréal 1375 Avenue Thérèse-Lavoie-Roux QCH2V 0B3 Canada Ciela - Montreal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Center for Computational Astrophysics Flatiron Institute 162 5th Avenue New YorkNY10010 United States Department of Physics and Astronomy University College London Gower Street LondonWC1E 6BT United Kingdom
The cosmic microwave background (CMB) offers a unique window into the earlyuniverse, providing insights into cosmological parameters like the Hubbleconstant. Recent precise measurements of the CMB by experiments like ... 详细信息
来源: 评论