咨询与建议

限定检索结果

文献类型

  • 110 篇 期刊文献
  • 89 篇 会议

馆藏范围

  • 199 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 116 篇 工学
    • 72 篇 计算机科学与技术...
    • 64 篇 软件工程
    • 19 篇 信息与通信工程
    • 19 篇 控制科学与工程
    • 18 篇 生物工程
    • 16 篇 光学工程
    • 10 篇 生物医学工程(可授...
    • 9 篇 化学工程与技术
    • 7 篇 电气工程
    • 6 篇 电子科学与技术(可...
    • 5 篇 力学(可授工学、理...
    • 5 篇 机械工程
    • 5 篇 仪器科学与技术
    • 4 篇 建筑学
  • 115 篇 理学
    • 70 篇 数学
    • 44 篇 统计学(可授理学、...
    • 38 篇 物理学
    • 22 篇 地球物理学
    • 19 篇 生物学
    • 12 篇 系统科学
    • 7 篇 化学
  • 39 篇 管理学
    • 22 篇 管理科学与工程(可...
    • 19 篇 图书情报与档案管...
    • 12 篇 工商管理
  • 15 篇 医学
    • 14 篇 临床医学
    • 10 篇 基础医学(可授医学...
    • 5 篇 公共卫生与预防医...
    • 5 篇 药学(可授医学、理...
  • 11 篇 法学
    • 11 篇 社会学
  • 8 篇 经济学
    • 8 篇 应用经济学
  • 6 篇 农学
  • 1 篇 教育学

主题

  • 9 篇 galaxies
  • 7 篇 machine learning
  • 6 篇 deep learning
  • 6 篇 cosmology
  • 6 篇 feature extracti...
  • 5 篇 forecasting
  • 5 篇 training
  • 4 篇 surveys
  • 4 篇 image segmentati...
  • 4 篇 neural networks
  • 4 篇 accuracy
  • 4 篇 sensors
  • 3 篇 task analysis
  • 3 篇 probability dist...
  • 3 篇 stars
  • 3 篇 convolution
  • 3 篇 predictive model...
  • 3 篇 decision making
  • 3 篇 time series
  • 3 篇 embeddings

机构

  • 19 篇 department of da...
  • 18 篇 financial univer...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 12 篇 ciela - montreal...
  • 11 篇 center for compu...
  • 10 篇 department of st...
  • 9 篇 national enginee...
  • 9 篇 center for machi...
  • 9 篇 center for data ...
  • 8 篇 department of hi...
  • 7 篇 peking universit...
  • 7 篇 department of ph...
  • 7 篇 beijing internat...
  • 7 篇 mila - quebec ar...
  • 6 篇 department of da...
  • 6 篇 department of ph...
  • 6 篇 v.a. trapeznikov...
  • 5 篇 lab crestview ra...
  • 5 篇 department of da...

作者

  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 12 篇 andriyanov nikit...
  • 11 篇 hezaveh yashar
  • 10 篇 perreault-levass...
  • 7 篇 hüllermeier eyke
  • 7 篇 li zhang
  • 7 篇 jie zhao
  • 7 篇 waegeman willem
  • 7 篇 bin dong
  • 6 篇 li hongwei bran
  • 6 篇 zifan chen
  • 6 篇 lemos pablo
  • 6 篇 legin ronan
  • 6 篇 pasquato mario
  • 5 篇 bakas spyridon
  • 5 篇 wang chunhao
  • 5 篇 kazerooni anahit...

语言

  • 188 篇 英文
  • 11 篇 其他
检索条件"机构=Data Analysis and Machine Learning"
199 条 记 录,以下是191-200 订阅
排序:
Diverse subgroup set discovery
Diverse subgroup set discovery
收藏 引用
作者: Van Leeuwen, Matthijs Knobbe, Arno Machine Learning Department of Computer Science Katholieke Universiteit Leuven Leuven Belgium Algorithmic Data Analysis Department of Information and Computer Sciences Universiteit Utrecht Utrecht Netherlands Leiden Institute of Advanced Computer Science Universiteit Leiden Leiden Netherlands
Large data is challenging for most existing discovery algorithms, for several reasons. First of all, such data leads to enormous hypothesis spaces, making exhaustive search infeasible. Second, many variants of essenti... 详细信息
来源: 评论
Pitfalls in EEG-based brain effective connectivity analysis
Pitfalls in EEG-based brain effective connectivity analysis
收藏 引用
International Workshop on machine learning and Interpretation in Neuroimaging, MLINI 2011, Held at Neural Information Processing, NIPS 2011
作者: Haufe, Stefan Nikulin, Vadim V. Nolte, Guido Müller, Klaus-Robert Berlin Institute of Technology Machine Learning Germany Bernstein Focus Neurotechnology Berlin Germany Neurophysics Charité University Medicine Berlin Germany Bernstein Center for Computational Neuroscience Berlin Germany Intelligent Data Analysis Fraunhofer Institute FIRST Berlin Germany
We consider the problem of estimating brain effective connectivity from electroencephalographic (EEG) measurements, which is challenging due to instantaneous correlations in the sensor data caused by volume conduction... 详细信息
来源: 评论
Support vector novelty detection in hidden space
收藏 引用
Journal of Computational Information Systems 2011年 第15期7卷 5581-5590页
作者: Zhang, Li Wang, Bangjun Li, Fanzhang He, Shuping Research Center of Machine Learning and Data Analysis School of Computer Science and Technology Soochow University Suzhou 215006 China
In this paper, a family of support vector novelty detection (or SVND) in hidden space is presented. Firstly a hidden-space SVND (or HSVND) algorithm is proposed. The data in an input space is mapped into a hidden spac... 详细信息
来源: 评论
A novel brain-computer interface based on the rapid serial visual presentation paradigm
A novel brain-computer interface based on the rapid serial v...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Laura Acqualagna Matthias Sebastian Treder Martijn Schreuder Benjamin Blankertz Università degli Studi di Genova Genova Italy Machine Learning Laboratory Berlin Institute of Technology Germany Berlin Institute of Technology Machine Learning Laboratory Germany Fraunhofer FIRST Intelligent Data Analysis group Berlin Germany
Most present-day visual brain computer interfaces (BCIs) suffer from the fact that they rely on eye movements, are slow-paced, or feature a small vocabulary. As a potential remedy, we explored a novel BCI paradigm con... 详细信息
来源: 评论
Using ERPs for assessing the (sub) conscious perception of noise
Using ERPs for assessing the (sub) conscious perception of n...
收藏 引用
Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
作者: Anne K. Porbadnigk Jan-N. Antons Benjamin Blankertz Matthias S. Treder Robert Schleicher Sebastian Möller Gabriel Curio Machine Learning Laboratory Berlin Institute of Technology Berlin Germany Quality and Usability Lab Telekom Laboratories Berlin Germany Intelligent Data Analysis Group Fraunhofer FIRST Berlin Germany Department of Neurology and Clinical Neurophysiology Charite Berlin Germany Department of Neurology Clinical Neurophysiology Charite Berlin Germany
In this paper, we investigate the use of event-related potentials (ERPs) as a quantitative measure for quality assessment of disturbed audio signals. For this purpose, we ran an EEG study (N=11) using an oddball parad... 详细信息
来源: 评论
Improving BCI performance by modified common spatial patterns with robustly averaged covariance matrices
收藏 引用
World Congress on Medical Physics and Biomedical Engineering: Neuroengineering, Neural Systems, Rehabilitation and Prosthetics
作者: Kawanabe, M. Vidaurre, C. Intelligent Data Analysis Group Fraunhofer FIRST Kekulestr. 7 12489 Berlin Germany Machine Learning Group TU-Berlin Franklinstr. 28/29 10587 Berlin Germany
EEG single-trial analysis requires methods that are robust against noise and disturbance. In this contribution, based on the framework of robust statistics, we propose a simple modification of Common Spatial Patterns ... 详细信息
来源: 评论
learning invariances with stationary subspace analysis
Learning invariances with stationary subspace analysis
收藏 引用
2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops 2009
作者: Meinecke, Frank C. Von Bünau, Paul Kawanabe, Motoaki Müller, Klaus-R. Machine Learning Group Dept. Computer Science TU Berlin Franklinstr. 28/29 10587 Berlin Germany Intelligent Data Analysis Group Fraunhofer FIRST.IDA Kekuléstr. 7 12489 Berlin Germany
Recently, a novel subspace decomposition method, termed 'Stationary Subspace analysis' (SSA), has been proposed by Bünau et al. [10]. SSA aims to find a linear projection to a lower dimensional subspace s... 详细信息
来源: 评论
learning invariances with Stationary Subspace analysis
Learning invariances with Stationary Subspace Analysis
收藏 引用
International Conference on Computer Vision Workshops (ICCV Workshops)
作者: Frank C. Meinecke Paul von Bünau Motoaki Kawanabe Klaus-R. Müller Machine Learning Group Department Computer Science Technical University Berlin Berlin Germany Intelligent Data Analysis Group Fraunhofer FIRST (IDA) Berlin Germany
Recently, a novel subspace decomposition method, termed `Stationary Subspace analysis' (SSA), has been proposed by Bu¿nau et al.. SSA aims to find a linear projection to a lower dimensional subspace such that... 详细信息
来源: 评论
Comments on: Augmenting the bootstrap to analyze high dimensional genomic data
收藏 引用
TEST 2008年 第1期17卷 31-35页
作者: Boulesteix, Anne-Laure Kondylis, Athanassios Krämer, Nicole Sylvia Lawry Centre for Multiple Sclerosis Research Munich Germany Institute of Statistics University of Neuchâtel Neuchâtel Switzerland Machine Learning/Intelligent Data Analysis Group Technical University of Berlin FR 6–9 Berlin Germany
来源: 评论