咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 30 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 5 篇 信息与通信工程
    • 3 篇 化学工程与技术
    • 2 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 农业工程
    • 1 篇 生物工程
  • 17 篇 管理学
    • 12 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 15 篇 理学
    • 8 篇 数学
    • 3 篇 化学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...

主题

  • 6 篇 neural machine t...
  • 2 篇 neurons
  • 2 篇 distillation
  • 2 篇 large dataset
  • 2 篇 alignment
  • 2 篇 sentiment analys...
  • 2 篇 classification (...
  • 1 篇 machine translat...
  • 1 篇 learning systems
  • 1 篇 deep space
  • 1 篇 teaching
  • 1 篇 hierarchical sys...
  • 1 篇 generative adver...
  • 1 篇 statistics
  • 1 篇 image segmentati...
  • 1 篇 wavelet
  • 1 篇 integration
  • 1 篇 knowledge manage...
  • 1 篇 graph neural net...
  • 1 篇 uncertainty anal...

机构

  • 24 篇 beijing key lab ...
  • 22 篇 pattern recognit...
  • 5 篇 pattern recognit...
  • 3 篇 tsinghua univers...
  • 3 篇 gaoling school o...
  • 3 篇 moe key lab of c...
  • 3 篇 school of inform...
  • 3 篇 university of ch...
  • 3 篇 school of comput...
  • 3 篇 beijing key labo...
  • 2 篇 university of sc...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...

作者

  • 28 篇 zhou jie
  • 25 篇 meng fandong
  • 23 篇 xu jinan
  • 22 篇 chen yufeng
  • 17 篇 liang yunlong
  • 5 篇 xu changsheng
  • 5 篇 sang jitao
  • 4 篇 wang jiaan
  • 4 篇 liu yijin
  • 3 篇 li peng
  • 3 篇 zhang xue
  • 3 篇 sun xu
  • 3 篇 zheng guanhua
  • 3 篇 lai siyu
  • 3 篇 zhang songming
  • 3 篇 lin yankai
  • 3 篇 zhao guangxiang
  • 3 篇 yang zhen
  • 3 篇 su jinsong
  • 3 篇 zhou chulun

语言

  • 29 篇 英文
  • 10 篇 其他
检索条件"机构=Data Analysis and Pattern Recognition Lab"
39 条 记 录,以下是1-10 订阅
排序:
Multilingual Knowledge Editing with Language-Agnostic Factual Neurons  31
Multilingual Knowledge Editing with Language-Agnostic Factua...
收藏 引用
31st International Conference on Computational Linguistics, COLING 2025
作者: Zhang, Xue Liang, Yunlong Meng, Fandong Zhang, Songming Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Multilingual knowledge editing (MKE) aims to simultaneously update factual knowledge across multiple languages within large language models (LLMs). Previous research indicates that the same knowledge across different ... 详细信息
来源: 评论
BJTU-WeChat's Systems for the WMT22 Chat Translation Task  7
BJTU-WeChat's Systems for the WMT22 Chat Translation Task
收藏 引用
7th Conference on Machine Translation, WMT 2022
作者: Liang, Yunlong Meng, Fandong Xu, Jinan Chen, Yufeng Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
This paper introduces the joint submission of the Beijing Jiaotong University and WeChat AI to the WMT'22 chat translation task for English↔German. Based on the Transformer (Vaswani et al., 2017), we apply several...
来源: 评论
Cross-Align: Modeling Deep Cross-lingual Interactions for Word Alignment
Cross-Align: Modeling Deep Cross-lingual Interactions for Wo...
收藏 引用
2022 Conference on Empirical Methods in Natural Language Processing, EMNLP 2022
作者: Lai, Siyu Yang, Zhen Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Word alignment which aims to extract lexicon translation equivalents between source and target sentences, serves as a fundamental tool for natural language processing. Recent studies in this area have yielded substant... 详细信息
来源: 评论
Enhancing Cross-Tokenizer Knowledge Distillation with Contextual Dynamical Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Chen, Yijie Liu, Yijin Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Knowledge Distillation (KD) has emerged as a prominent technique for model compression. However, conventional KD approaches primarily focus on homogeneous architectures with identical tokenizers, constraining their ap... 详细信息
来源: 评论
Multilingual Knowledge Editing with Language-Agnostic Factual Neurons
arXiv
收藏 引用
arXiv 2024年
作者: Zhang, Xue Liang, Yunlong Meng, Fandong Zhang, Songming Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Multilingual knowledge editing (MKE) aims to simultaneously update factual knowledge across multiple languages within large language models (LLMs). Previous research indicates that the same knowledge across different ... 详细信息
来源: 评论
Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Yijie Liu, Yijin Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Gender bias has been a focal point in the study of bias in machine translation and language models. Existing machine translation gender bias evaluations are primarily focused on male and female genders, limiting the s... 详细信息
来源: 评论
Unified Model Learning for Various Neural Machine Translation
arXiv
收藏 引用
arXiv 2023年
作者: Liang, Yunlong Meng, Fandong Xu, Jinan Wang, Jiaan Chen, Yufeng Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Existing neural machine translation (NMT) studies mainly focus on developing dataset-specific models based on data from different tasks (e.g., document translation and chat translation). Although the dataset-specific ... 详细信息
来源: 评论
Modeling bilingual conversational characteristics for neural chat translation  59
Modeling bilingual conversational characteristics for neural...
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
作者: Liang, Yunlong Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Neural chat translation aims to translate bilingual conversational text, which has a broad application in international exchanges and cooperation. Despite the impressive performance of sentence-level and context-aware... 详细信息
来源: 评论
Generating Authentic Adversarial Examples beyond Meaning-preserving with Doubly Round-trip Translation
arXiv
收藏 引用
arXiv 2022年
作者: Lai, Siyu Yang, Zhen Meng, Fandong Zhang, Xue Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China Pattern Recognition Center WeChat AI Tencent Inc China
Generating adversarial examples for Neural Machine Translation (NMT) with single Round-Trip Translation (RTT) has achieved promising results by releasing the meaning-preserving restriction. However, a potential pitfal... 详细信息
来源: 评论
RC3: Regularized Contrastive Cross-lingual Cross-modal Pre-training
arXiv
收藏 引用
arXiv 2023年
作者: Zhou, Chulun Liang, Yunlong Meng, Fandong Xu, Jinan Su, Jinsong Zhou, Jie Pattern Recognition Center WeChat AI Tencent Inc. China Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China School of Informatics Xiamen University Xiamen China
Multilingual vision-language (V&L) pretraining has achieved remarkable progress in learning universal representations across different modalities and languages. In spite of recent success, there still remain chall... 详细信息
来源: 评论