咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 30 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 5 篇 信息与通信工程
    • 3 篇 化学工程与技术
    • 2 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 农业工程
    • 1 篇 生物工程
  • 17 篇 管理学
    • 12 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 15 篇 理学
    • 8 篇 数学
    • 3 篇 化学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...

主题

  • 6 篇 neural machine t...
  • 2 篇 neurons
  • 2 篇 distillation
  • 2 篇 large dataset
  • 2 篇 alignment
  • 2 篇 sentiment analys...
  • 2 篇 classification (...
  • 1 篇 machine translat...
  • 1 篇 learning systems
  • 1 篇 deep space
  • 1 篇 teaching
  • 1 篇 hierarchical sys...
  • 1 篇 generative adver...
  • 1 篇 statistics
  • 1 篇 image segmentati...
  • 1 篇 wavelet
  • 1 篇 integration
  • 1 篇 knowledge manage...
  • 1 篇 graph neural net...
  • 1 篇 uncertainty anal...

机构

  • 24 篇 beijing key lab ...
  • 22 篇 pattern recognit...
  • 5 篇 pattern recognit...
  • 3 篇 tsinghua univers...
  • 3 篇 gaoling school o...
  • 3 篇 moe key lab of c...
  • 3 篇 school of inform...
  • 3 篇 university of ch...
  • 3 篇 school of comput...
  • 3 篇 beijing key labo...
  • 2 篇 university of sc...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...

作者

  • 28 篇 zhou jie
  • 25 篇 meng fandong
  • 23 篇 xu jinan
  • 22 篇 chen yufeng
  • 17 篇 liang yunlong
  • 5 篇 xu changsheng
  • 5 篇 sang jitao
  • 4 篇 wang jiaan
  • 4 篇 liu yijin
  • 3 篇 li peng
  • 3 篇 zhang xue
  • 3 篇 sun xu
  • 3 篇 zheng guanhua
  • 3 篇 lai siyu
  • 3 篇 zhang songming
  • 3 篇 lin yankai
  • 3 篇 zhao guangxiang
  • 3 篇 yang zhen
  • 3 篇 su jinsong
  • 3 篇 zhou chulun

语言

  • 29 篇 英文
  • 10 篇 其他
检索条件"机构=Data Analysis and Pattern Recognition Lab"
39 条 记 录,以下是21-30 订阅
排序:
WHEN TO TRUST AGGREGATED GRADIENTS: ADDRESSING NEGATIVE CLIENT SAMPLING IN FEDERATED LEARNING
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Wenkai Lin, Yankai Zhao, Guangxiang Li, Peng Zhou, Jie Sun, Xu Center for Data Science Peking University China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Shanghai AI Lab China Tsinghua University Beijing China Pattern Recognition Center WeChat AI Tencent Inc. China MOE Key Lab of Computational Linguistics School of Computer Science Peking University China
Federated Learning has become a widely-used framework which allows learning a global model on decentralized local datasets under the condition of protecting local data privacy. However, federated learning faces severe... 详细信息
来源: 评论
Target-oriented fine-tuning for zero-resource named entity recognition
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Ying Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Zero-resource named entity recognition (NER) severely suffers from data scarcity in a specific domain or language. Most studies on zero-resource NER transfer knowledge from various data by fine-tuning on different aux... 详细信息
来源: 评论
Modeling bilingual conversational characteristics for neural chat translation
arXiv
收藏 引用
arXiv 2021年
作者: Liang, Yunlong Meng, Fandong Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
Neural chat translation aims to translate bilingual conversational text, which has a broad application in international exchanges and cooperation. Despite the impressive performance of sentence-level and context-aware... 详细信息
来源: 评论
Understanding Translationese in Cross-Lingual Summarization
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Jiaan Meng, Fandong Liang, Yunlong Zhang, Tingyi Xu, Jiarong Li, Zhixu Zhou, Jie Shanghai Key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Pattern Recognition Center WeChat AI Tencent Inc China Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China School of Management Fudan University Shanghai China
Given a document in a source language, cross-lingual summarization (CLS) aims at generating a concise summary in a different target language. Unlike monolingual summarization (MS), naturally occurring source-language ... 详细信息
来源: 评论
Towards making the most of dialogue characteristics for neural chat translation
arXiv
收藏 引用
arXiv 2021年
作者: Liang, Yunlong Zhou, Chulun Meng, Fandong Xu, Jinan Chen, Yufeng Su, Jinsong Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University School of Informatics Xiamen University Pattern Recognition Center WeChat AI Tencent Inc China
Neural Chat Translation (NCT) aims to translate conversational text between speakers of different languages. Despite the promising performance of sentence-level and context-aware neural machine translation models, the... 详细信息
来源: 评论
From Mimicking to Integrating: Knowledge Integration for Pre-Trained Language Models
arXiv
收藏 引用
arXiv 2022年
作者: Li, Lei Lin, Yankai Ren, Xuancheng Zhao, Guangxiang Li, Peng Zhou, Jie Sun, Xu MOE Key Lab of Computational Linguistics School of Computer Science Peking University China Gaoling School of Artificial Intelligence Renmin University of China Beijing China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Tsinghua University China Pattern Recognition Center WeChat AI Tencent Inc. China
Investigating better ways to reuse the released pre-trained language models (PLMs) can significantly reduce the computational cost and the potential environmental side-effects. This paper explores a novel PLM reuse pa... 详细信息
来源: 评论
Prevent the language model from being overconfident in neural machine translation
arXiv
收藏 引用
arXiv 2021年
作者: Miao, Mengqi Meng, Fandong Liu, Yijin Zhou, Xiao-Hua Zhou, Jie Peking University China Pattern Recognition Center WeChat AI Tencent Inc China Beijing International Center for Mathematical Research National Engineering Lab for Big Data Analysis and Applications Department of Biostatistics Peking University Beijing China
The Neural Machine Translation (NMT) model is essentially a joint language model conditioned on both the source sentence and partial translation. Therefore, the NMT model naturally involves the mechanism of the Langua... 详细信息
来源: 评论
MF-CLIP: Leveraging CLIP as Surrogate Models for No-box Adversarial Attacks
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Jiaming Qiu, Lingyu Yi, Qi Li, Yige Sang, Jitao Xu, Changsheng Yeung, Dit-Yan Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong Department of Mathematics and Applications University of Naples Federico II Naples Italy School of Computing and Information Systems Singapore Management University Singapore School of Computer and Information Technology Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences Beijing China University of Chinese Academy of Sciences Beijing100190 China
The vulnerability of Deep Neural Networks (DNNs) to adversarial attacks poses a significant challenge to their deployment in safety-critical applications. While extensive research has addressed various attack scenario... 详细信息
来源: 评论
Emotional Conversation Generation with Heterogeneous Graph Neural Network
arXiv
收藏 引用
arXiv 2020年
作者: Liang, Yunlong Meng, Fandong Zhang, Ying Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc China
The successful emotional conversation system depends on sufficient perception and appropriate expression of emotions. In a real-life conversation, humans firstly instinctively perceive emotions from multi-source infor... 详细信息
来源: 评论
An iterative multi-knowledge transfer network for aspect-based sentiment analysis
arXiv
收藏 引用
arXiv 2020年
作者: Liang, Yunlong Meng, Fandong Zhang, Jinchao Chen, Yufeng Xu, Jinan Zhou, Jie Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China Pattern Recognition Center WeChat AI Tencent Inc. China
Aspect-based sentiment analysis (ABSA) mainly involves three subtasks: aspect term extraction, opinion term extraction, and aspect-level sentiment classification, which are typically handled in a separate or joint man... 详细信息
来源: 评论