咨询与建议

限定检索结果

文献类型

  • 32 篇 期刊文献
  • 7 篇 会议

馆藏范围

  • 39 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 34 篇 工学
    • 30 篇 计算机科学与技术...
    • 28 篇 软件工程
    • 5 篇 信息与通信工程
    • 3 篇 化学工程与技术
    • 2 篇 机械工程
    • 1 篇 仪器科学与技术
    • 1 篇 电子科学与技术(可...
    • 1 篇 控制科学与工程
    • 1 篇 农业工程
    • 1 篇 生物工程
  • 17 篇 管理学
    • 12 篇 图书情报与档案管...
    • 4 篇 管理科学与工程(可...
    • 2 篇 工商管理
    • 1 篇 公共管理
  • 15 篇 理学
    • 8 篇 数学
    • 3 篇 化学
    • 3 篇 生物学
    • 3 篇 统计学(可授理学、...
    • 1 篇 系统科学
  • 1 篇 法学
    • 1 篇 社会学
  • 1 篇 教育学
    • 1 篇 教育学
  • 1 篇 文学
    • 1 篇 中国语言文学
    • 1 篇 外国语言文学
  • 1 篇 农学
    • 1 篇 作物学
  • 1 篇 医学
    • 1 篇 临床医学
    • 1 篇 公共卫生与预防医...

主题

  • 6 篇 neural machine t...
  • 2 篇 neurons
  • 2 篇 distillation
  • 2 篇 large dataset
  • 2 篇 alignment
  • 2 篇 sentiment analys...
  • 2 篇 classification (...
  • 1 篇 machine translat...
  • 1 篇 learning systems
  • 1 篇 deep space
  • 1 篇 teaching
  • 1 篇 hierarchical sys...
  • 1 篇 generative adver...
  • 1 篇 statistics
  • 1 篇 image segmentati...
  • 1 篇 wavelet
  • 1 篇 integration
  • 1 篇 knowledge manage...
  • 1 篇 graph neural net...
  • 1 篇 uncertainty anal...

机构

  • 24 篇 beijing key lab ...
  • 22 篇 pattern recognit...
  • 5 篇 pattern recognit...
  • 3 篇 tsinghua univers...
  • 3 篇 gaoling school o...
  • 3 篇 moe key lab of c...
  • 3 篇 school of inform...
  • 3 篇 university of ch...
  • 3 篇 school of comput...
  • 3 篇 beijing key labo...
  • 2 篇 university of sc...
  • 1 篇 department of ra...
  • 1 篇 public health un...
  • 1 篇 department of ph...
  • 1 篇 department of in...
  • 1 篇 department of co...
  • 1 篇 department of co...
  • 1 篇 university centr...
  • 1 篇 national institu...
  • 1 篇 institute of adv...

作者

  • 28 篇 zhou jie
  • 25 篇 meng fandong
  • 23 篇 xu jinan
  • 22 篇 chen yufeng
  • 17 篇 liang yunlong
  • 5 篇 xu changsheng
  • 5 篇 sang jitao
  • 4 篇 wang jiaan
  • 4 篇 liu yijin
  • 3 篇 li peng
  • 3 篇 zhang xue
  • 3 篇 sun xu
  • 3 篇 zheng guanhua
  • 3 篇 lai siyu
  • 3 篇 zhang songming
  • 3 篇 lin yankai
  • 3 篇 zhao guangxiang
  • 3 篇 yang zhen
  • 3 篇 su jinsong
  • 3 篇 zhou chulun

语言

  • 29 篇 英文
  • 10 篇 其他
检索条件"机构=Data Analysis and Pattern Recognition Lab"
39 条 记 录,以下是31-40 订阅
排序:
A knowledge-driven generative model for multi-implication Chinese medical procedure entity normalization
A knowledge-driven generative model for multi-implication Ch...
收藏 引用
2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020
作者: Yan, Jinghui Wang, Yining Xiang, Lu Zhou, Yu Zong, Chengqing School of Computer Science and Information Technology Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing China National Laboratory of Pattern Recognition Institute of Automation CAS Beijing China University of Chinese Academy of Sciences Beijing China CAS Center for Excellence in Brain Science and Intelligence Technology Beijing China Beijing Fanyu Technology Co. Ltd China
Medical entity normalization, which links medical mentions in the text to entities in knowledge bases, is an important research topic in medical natural language processing. In this paper, we focus on Chinese medical ... 详细信息
来源: 评论
Learning to learn a cold-start sequential recommender
arXiv
收藏 引用
arXiv 2021年
作者: Huang, Xiaowen Sang, Jitao Yu, Jian Xu, Changsheng School of Computer and Information Technology Beijing Key Lab of Traffic Data Analysis and Mining Beijing Jiaotong University Haidian Qu Shi Beijing China National Lab of Pattern Recognition Institute of Automation Chinese Academy of Sciences 95 Zhongguancun Rd Haidian Qu Shi Beijing China School of Artificial Intelligence University of Chinese Academy of Sciences 80 Zhongguancun Rd Haidian Qu Shi Beijing China Peng Cheng Laboratory Shenzhen China
The cold-start recommendation is an urgent problem in contemporary online applications. It aims to provide users whose behaviors are literally sparse with as accurate recommendations as possible. Many data-driven algo... 详细信息
来源: 评论
MMCGAN: Generative Adversarial Network with explicit manifold prior
arXiv
收藏 引用
arXiv 2020年
作者: Zheng, Guanhua Sang, Jitao Xu, Changsheng University of Science and Technology of China School of Computer and Information Technology Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing100044 China National Lab of Pattern Recognition Institute of Automation CAS University of Chinese Academy of Sciences Beijing100190 China
Generative Adversarial Network(GAN) provides a good generative framework to produce realistic samples, but suffers from two recognized issues as mode collapse and unstable training. In this work, we propose to employ ... 详细信息
来源: 评论
Medical history predicts phenome-wide disease onset and enables the rapid response to emerging health threats (vol 16, 585, 2025)
收藏 引用
NATURE COMMUNICATIONS 2025年 第1期16卷 1-15页
作者: Steinfeldt, Jakob Wild, Benjamin Buergel, Thore Pietzner, Maik Upmeier zu Belzen, Julius Vauvelle, Andre Hegselmann, Stefan Denaxas, Spiros Hemingway, Harry Langenberg, Claudia Landmesser, Ulf Deanfield, John Eils, Roland Department of Cardiology Angiology and Intensive Care Medicine Deutsches Herzzentrum der Charité (DHZC) Berlin Germany Charité – Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Klinik/Centrum Berlin Germany Computational Medicine Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Friede Springer Cardiovascular Prevention Center@Charite Charite - University Medicine Berlin Berlin Germany Institute of Cardiovascular Sciences University College London London UK Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Berlin Germany MRC Epidemiology Unit Institute of Metabolic Science University of Cambridge Cambridge UK Precision Health University Research Institute Queen Mary University of London and Barts NHS Trust London UK Center for Digital Health Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany Health Data Science Unit Heidelberg University Hospital and BioQuant Heidelberg Germany Institute of Health Informatics University College London London UK British Heart Foundation Data Science Centre London UK Health Data Research UK London UK National Institute for Health Research Biomedical Research Centre at University College London Hospitals London UK Institute for Medical Engineering and Science Massachusetts Institute of Technology Massachusetts USA Pattern Recognition and Image Analysis Lab University of Münster Münster Germany
The COVID-19 pandemic exposed a global deficiency of systematic, data-driven guidance to identify high-risk individuals. Here, we illustrate the utility of routinely recorded medical history to predict the risk for 17...
来源: 评论
A generalization theory based on independent and task-identically distributed assumption
arXiv
收藏 引用
arXiv 2019年
作者: Zheng, Guanhua Sang, Jitao Li, Houqiang Yu, Jian Xu, Changsheng University of Science and Technology of China School of Computer and Information Technology Beijing Key Laboratory of Traffic Data Analysis and Mining Beijing Jiaotong University Beijing100044 China Chinese Academy of Sciences Key Laboratory of Technology in Geo-Spatial Information Processing and Application System Hefei230026 China National Lab of Pattern Recognition Institute of Automation CAS Beijing100190 China University of Chinese Academy of Sciences
—Existing generalization theories analyze the generalization performance mainly based on the model complexity and training process. The ignorance of the task properties, which results from the widely used IID assumpt... 详细信息
来源: 评论
Author Correction: Medical history predicts phenome-wide disease onset and enables the rapid response to emerging health threats
收藏 引用
Nature communications 2025年 第1期16卷 1507页
作者: Jakob Steinfeldt Benjamin Wild Thore Buergel Maik Pietzner Julius Upmeier Zu Belzen Andre Vauvelle Stefan Hegselmann Spiros Denaxas Harry Hemingway Claudia Langenberg Ulf Landmesser John Deanfield Roland Eils Department of Cardiology Angiology and Intensive Care Medicine Deutsches Herzzentrum der Charité (DHZC) Berlin Germany. Charité - Universitätsmedizin Berlin corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin Klinik/Centrum Berlin Germany. Computational Medicine Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany. Friede Springer Cardiovascular Prevention Center@Charite Charite - University Medicine Berlin Berlin Germany. Institute of Cardiovascular Sciences University College London London UK. Center for Digital Health Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany. MRC Epidemiology Unit Institute of Metabolic Science University of Cambridge Cambridge UK. Precision Health University Research Institute Queen Mary University of London and Barts NHS Trust London UK. Institute of Health Informatics University College London London UK. Institute for Medical Engineering and Science Massachusetts Institute of Technology Massachusetts USA. Pattern Recognition and Image Analysis Lab University of Münster Münster Germany. British Heart Foundation Data Science Centre London UK. Health Data Research UK London UK. National Institute for Health Research Biomedical Research Centre at University College London Hospitals London UK. Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany. DZHK (German Centre for Cardiovascular Research) Partner Site Berlin Berlin Berlin Germany. Center for Digital Health Berlin Institute of Health (BIH) Charite - University Medicine Berlin Berlin Germany. roland.eils@bih-charite.de. Health Data Science Unit Heidelberg University Hospital and BioQuant Heidelberg Germany. roland.eils@bih-charite.de.
来源: 评论
Global investments in pandemic preparedness and COVID-19: development assistance and domestic spending on health between 1990 and 2026
收藏 引用
The Lancet Global Health 2023年 第3期11卷 e385-e413页
作者: Micah, Angela E. Bhangdia, Kayleigh Cogswell, Ian E. Lasher, Dylan Lidral-Porter, Brendan Maddison, Emilie R. Nguyen, Trang Nhu Ngoc Patel, Nishali Pedroza, Paola Solorio, Juan Stutzman, Hayley Tsakalos, Golsum Wang, Yifeng Warriner, Wesley Zhao, Yingxi Zlavog, Bianca S. Abbafati, Cristiana Abbas, Jaffar Abbasi-Kangevari, Mohsen Abbasi-Kangevari, Zeinab Abdelmasseh, Michael Abdulah, Deldar Morad Abedi, Aidin Abegaz, Kedir Hussein Abhilash, E.S. Aboagye, Richard Gyan Abolhassani, Hassan Abrigo, Michael R.M. Abubaker Ali, Hiwa Abu-Gharbieh, Eman Adem, Mohammed Hussien Afzal, Muhammad Sohail Ahmadi, Ali Ahmed, Haroon Ahmed Rashid, Tarik Aji, Budi Akbarialiabad, Hossein Akelew, Yibeltal Al Hamad, Hanadi Alam, Khurshid Alanezi, Fahad Mashhour Alanzi, Turki M. Al-Hanawi, Mohammed Khaled Alhassan, Robert Kaba Aljunid, Syed Mohamed Almustanyir, Sami Al-Raddadi, Rajaa M. Alvis-Guzman, Nelson Alvis-Zakzuk, Nelson J. Amare, Azmeraw T. Ameyaw, Edward Kwabena Amini-Rarani, Mostafa Amu, Hubert Ancuceanu, Robert Andrei, Tudorel Anwar, Sumadi Lukman Appiah, Francis Aqeel, Muhammad Arabloo, Jalal Arab-Zozani, Morteza Aravkin, Aleksandr Y. Aremu, Olatunde Aruleba, Raphael Taiwo Athari, Seyyed Shamsadin Avila-Burgos, Leticia Ayanore, Martin Amogre Azari, Samad Baig, Atif Amin Bantie, Abere Tilahun Barrow, Amadou Baskaran, Pritish Basu, Sanjay Batiha, Abdul-Monim Mohammad Baune, Bernhard T. Berezvai, Zombor Bhardwaj, Nikha Bhardwaj, Pankaj Bhaskar, Sonu Boachie, Micheal Kofi Bodolica, Virginia Botelho, João Silva Botelho Braithwaite, Dejana Breitborde, Nicholas J.K. Busse, Reinhard Cahuana-Hurtado, Lucero Catalá-López, Ferrán Chansa, Collins Charan, Jaykaran Chattu, Vijay Kumar Chen, Simiao Chukwu, Isaac Sunday Dadras, Omid Dandona, Lalit Dandona, Rakhi Dargahi, Abdollah Debela, Sisay Abebe Denova-Gutiérrez, Edgar Desye, Belay Dharmaratne, Samath Dhamminda Diao, Nancy Doan, Linh Phuong Dodangeh, Milad dos Santos, Wendel Mombaque Doshmangir, Leila Dube, John Eini, Ebrahim El Sayed Zaki, Maysaa El Tantawi, Maha Enyew, Daniel Berhanie Institute for Health Metrics and Evaluation University of Washington Seattle WA United States Department of Applied Mathematics University of Washington Seattle WA United States Department of Health Metrics Sciences School of Medicine University of Washington Seattle WA United States Nuffield Department of Medicine University of Oxford Oxford United Kingdom Department of Juridical and Economic Studies La Sapienza University Rome Italy Antai College of Economics Shanghai Jiao Tong University Shanghai China Non-communicable Diseases Research Center Tehran University of Medical Sciences Tehran Iran Research Center for Immunodeficiencies Tehran University of Medical Sciences Tehran Iran Multiple Sclerosis Research Center Tehran University of Medical Sciences Tehran Iran Children’s Medical Center Tehran University of Medical Sciences Tehran Iran Department of Epidemiology and Biostatistics Tehran University of Medical Sciences Tehran Iran Tehran Heart Center Tehran University of Medical Sciences Tehran Iran Faculty of Medicine Tehran University of Medical Sciences Tehran Iran National Institute for Health Research Tehran University of Medical Sciences Tehran Iran Department of Pharmacology Tehran University of Medical Sciences Tehran Iran Department of Cardiology Tehran University of Medical Sciences Tehran Iran Sina Trauma and Surgery Research Center Tehran University of Medical Sciences Tehran Iran Digestive Diseases Research Institute Tehran University of Medical Sciences Tehran Iran Department of Neurology Tehran University of Medical Sciences Tehran Iran Social Determinants of Health Research Center Shahid Beheshti University of Medical Sciences Tehran Iran Department of Epidemiology Shahid Beheshti University of Medical Sciences Tehran Iran Department of Health Economics and Statistics Shahid Beheshti University of Medical Sciences Tehran Iran Department of Neurosurgery Shahid Beheshti University of Medical Sciences Tehran Iran Ophthalmic R
Background: The COVID-19 pandemic highlighted gaps in health surveillance systems, disease prevention, and treatment globally. Among the many factors that might have led to these gaps is the issue of the financing of ...
来源: 评论
Attribute value selection considering the minimum description length approach and feature granularity
Attribute value selection considering the minimum descriptio...
收藏 引用
13th International Conference on Information Processing and Management of Uncertainty, IPMU 2010
作者: Ince, Kemal Klawonn, Frank Volkswagen AG Komponenten-Werkzeugbau Gifhornerstr. 180 Braunschweig 38037 Germany Data Analysis and Pattern Recognition Lab Ostfalia University of Applied Sciences Salzdahlumer Str. 46/48 Wolfenbüttel 38302 Germany
In this paper we introduce a new approach to automatic attribute and granularity selection for building optimum regression trees. The method is based on the minimum description length principle (MDL) and aspects of gr... 详细信息
来源: 评论
Remote sensing image compression for deep space based on region of interest
收藏 引用
Journal of Harbin Institute of Technology(New Series) 2003年 第3期10卷 300-303页
作者: 王振华 吴伟仁 田玉龙 田金文 柳健 Institute for Pattern Recognition and Artificial Intelligence State Key Lab for Image Processing and Intelligent ControlHuazhong University of Science and Technology Wuhan 430074 China Institute for Pattern Recognition and Artificial Intelligence State Key Lab for Image Processing and Intelligent ControlHuazhong University of Science and Technology Wuhan 430074 China major limitation for deep space communication is the limited bandwidths available. The downlink rate using X-band with an L2 halo orbit is estimated to be of only 5.35 GB/d. However the Next Generation Space Telescope (NGST) will produce about 600 GB/d. Clearly the volume of data to downlink must be reduced by at least a factor of 100. One of the resolutions is to encode the data using very low bit rate image compression techniques. An very low bit rate image compression method based on region of interest(ROI) has been proposed for deep space image. The conventional image compression algorithms which encode the original data without any data analysis can maintain very good details and haven't high compression rate while the modern image compressions with semantic organization can have high compression rate even to be hundred and can't maintain too much details. The algorithms based on region of interest inheriting from the two previews algorithms have good semantic features and high fidelity and is therefore suitable for applications at a low bit rate. The proposed method extracts the region of interest by texture analysis after wavelet transform and gains optimal local quality with bit rate control. The Result shows that our method can maintain more details in ROI than general image compression algorithm(SPIHT) under the condition of sacrificing the quality of other uninterested areas
A major limitation for deep space communication is the limited bandwidths available. The downlinkrate using X-band with an L2 halo orbit is estimated to be of only 5.35 GB/d. However, the Next GenerationSpace Telescop... 详细信息
来源: 评论