咨询与建议

限定检索结果

文献类型

  • 151 篇 期刊文献
  • 73 篇 会议
  • 1 册 图书

馆藏范围

  • 225 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 148 篇 工学
    • 99 篇 计算机科学与技术...
    • 83 篇 软件工程
    • 35 篇 生物工程
    • 23 篇 生物医学工程(可授...
    • 20 篇 光学工程
    • 17 篇 信息与通信工程
    • 15 篇 控制科学与工程
    • 14 篇 电气工程
    • 10 篇 机械工程
    • 9 篇 动力工程及工程热...
    • 9 篇 电子科学与技术(可...
    • 7 篇 建筑学
  • 117 篇 理学
    • 53 篇 数学
    • 47 篇 生物学
    • 29 篇 统计学(可授理学、...
    • 28 篇 物理学
    • 12 篇 系统科学
    • 11 篇 地球物理学
    • 7 篇 化学
    • 5 篇 天文学
  • 42 篇 管理学
    • 24 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 9 篇 工商管理
  • 24 篇 医学
    • 18 篇 基础医学(可授医学...
    • 17 篇 临床医学
    • 11 篇 药学(可授医学、理...
    • 9 篇 公共卫生与预防医...
  • 12 篇 农学
    • 6 篇 作物学
  • 11 篇 法学
    • 9 篇 社会学
  • 6 篇 教育学
    • 6 篇 教育学
  • 3 篇 经济学

主题

  • 10 篇 feature extracti...
  • 8 篇 machine learning
  • 7 篇 surveys
  • 6 篇 image segmentati...
  • 5 篇 deep learning
  • 5 篇 data mining
  • 5 篇 training
  • 5 篇 convolutional ne...
  • 4 篇 cosmological par...
  • 4 篇 optimization
  • 4 篇 semantics
  • 4 篇 data structures
  • 3 篇 covid-19
  • 3 篇 neurons
  • 3 篇 support vector m...
  • 3 篇 deep neural netw...
  • 3 篇 network topology
  • 3 篇 computational mo...
  • 3 篇 algorithm design...
  • 3 篇 benchmarking

机构

  • 14 篇 department of el...
  • 12 篇 department of el...
  • 9 篇 data analytics l...
  • 9 篇 department of st...
  • 6 篇 computer network...
  • 6 篇 department of co...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of sc...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...

作者

  • 15 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 12 篇 karray fakhri
  • 12 篇 crowley mark
  • 8 篇 katarya rahul
  • 7 篇 yu zeyun
  • 7 篇 hofmann thomas
  • 6 篇 refregier alexan...
  • 6 篇 fluri janis
  • 6 篇 king irwin
  • 5 篇 zhao tong
  • 5 篇 poonam goyal
  • 5 篇 navneet goyal
  • 5 篇 lucchi aurelien
  • 5 篇 wang peng
  • 5 篇 thomas hofmann
  • 5 篇 kacprzak tomasz
  • 5 篇 smeaton alan f.
  • 4 篇 james s. plank
  • 4 篇 sun lifeng

语言

  • 215 篇 英文
  • 9 篇 其他
  • 1 篇 中文
检索条件"机构=Data Analytics Laboratory Department of Computer Science ETH"
225 条 记 录,以下是101-110 订阅
排序:
KKT conditions, first-order and second-order optimization, and distributed optimization: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Karush-Kuhn-Tucker (KKT) conditions, first-order and second-order numerical optimization, and distributed optimization. After a brief review of history of optimization, we start ... 详细信息
来源: 评论
Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for nonlinear dimensionality and feature extraction methods which are based on the Laplacian of graph of data. We first introduce adjacency matrix, definition of Laplacian matrix, a... 详细信息
来源: 评论
Unified Framework for Spectral Dimensionality Reduction, Maximum Variance Unfolding, and Kernel Learning By Semidefinite Programming: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on unification of spectral dimensionality reduction methods, kernel learning by Semidefinite Programming (SDP), Maximum Variance Unfolding (MVU) or Semidefinite Embedding (SDE), and... 详细信息
来源: 评论
Uniform manifold approximation and projection (UMAP) and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Uniform Manifold Approximation and Projection (UMAP) is one of the state-of-the-art methods for dimensionality reduction and data visualization. This is a tutorial and survey paper on UMAP and its variants. We start w... 详细信息
来源: 评论
Locally linear embedding and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2020年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for Locally Linear Embedding (LLE) and its variants. The idea of LLE is fitting the local structure of manifold in the embedding space. In this paper, we first cover LLE, kernel LLE... 详细信息
来源: 评论
Collaborative authoring of Walden's paths
Collaborative authoring of Walden's paths
收藏 引用
2nd International Conference on Theory and Practice of Digital Libraries, TPDL 2012
作者: Li, Yuanling Bogen II, Paul Logasa Pogue, Daniel Furuta, Richard Shipman, Frank Center for the Study of Digital Libraries Department of Computer Science and Engineering Texas A and M University College Station TX United States Intelligent Computing Research Team Computational Data Analytics Group Oak Ridge National Laboratory Oak Ridge United States User Experience and Interaction Design Team Production Enhancement Halliburton Energy Services Houston TX United States
This paper presents a prototype of an authoring tool to allow users to collaboratively build, annotate, manage, share and reuse collections of distributed resources from the World Wide Web. This extends on the Walden&... 详细信息
来源: 评论
C-Net: A reliable convolutional neural network for biomedical image classification
arXiv
收藏 引用
arXiv 2020年
作者: Barzekar, Hosein Yu, Zeyun Big Data Analytics and Visualization Laboratory Department of Computer Science University of Wisconsin-Milwaukee MilwaukeeWI53211 United States Department of Biomedical Engineering University of Wisconsin-Milwaukee MilwaukeeWI53211 United States
Cancers are the leading cause of death in many countries. Early diagnosis plays a crucial role in having proper treatment for this debilitating disease. The automated classification of the type of cancer is a challeng... 详细信息
来源: 评论
Facilitated machine learning for image-based fruit quality assessment
arXiv
收藏 引用
arXiv 2022年
作者: Knott, Manuel Perez-Cruz, Fernando Defraeye, Thijs Empa Swiss Federal Laboratories for Materials Science Technology Laboratory for Biomimetic Membranes and Textiles St. Gallen Switzerland Swiss Data Science Center ETH Zurich and EPFL Zurich Switzerland Institute for Machine Learning Department of Computer Science ETH Zurich Switzerland
Image-based machine learning models can be used to make the sorting and grading of agricultural products more efficient. In many regions, implementing such systems can be difficult due to the lack of centralization an... 详细信息
来源: 评论
GPTR: Gestalt-Perception Transformer for Diagram Object Detection
arXiv
收藏 引用
arXiv 2022年
作者: Hu, Xin Zhang, Lingling Liu, Jun Fan, Jinfu You, Yang Wu, Yaqiang Shaanxi Provincial Key Laboratory of Big Data Knowledge Engineering School of Computer Science and Technology Xi’an Jiaotong University China National Engineering Lab for Big Data Analytics Xi’an Jiaotong University China Department of Control Science and Engineering Tongji University Shanghai China Department of Computer Science National University of Singapore Singapore Lenovo Research Beijing China
Diagram object detection is the key basis of practical applications such as textbook question answering. Because the diagram mainly consists of simple lines and color blocks, its visual features are sparser than those... 详细信息
来源: 评论
A study of complex deep learning networks on high-performance, neuromorphic, and quantum computers
A study of complex deep learning networks on high-performanc...
收藏 引用
作者: Potok, Thomas E. Schuman, Catherine Young, Steven Patton, Robert Spedalieri, Federico Liu, Jeremy Yao, Ke-Thia Rose, Garrett Chakma, Gangotree Computational Data Analytics Group Oak Ridge National Laboratory P.O. Box 2008 Oak RidgeTN37831 United States University of Southern California Information Sciences Institute 4676 Admiralty Way Marina del ReyCA90292 United States Department of Electrical Engineering and Computer Science University of Tennessee 1520 Middle Dr KnoxvilleTN37996 United States
Current deep learning approaches have been very successful using convolutional neural networks trained on large graphical-processing-unit-based computers. Three limitations of this approach are that (1) they are based... 详细信息
来源: 评论