咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 115 篇 会议

馆藏范围

  • 239 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 139 篇 工学
    • 102 篇 计算机科学与技术...
    • 89 篇 软件工程
    • 40 篇 生物工程
    • 35 篇 信息与通信工程
    • 31 篇 生物医学工程(可授...
    • 21 篇 光学工程
    • 19 篇 控制科学与工程
    • 15 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 5 篇 化学工程与技术
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
  • 94 篇 理学
    • 48 篇 数学
    • 43 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 21 篇 物理学
    • 11 篇 系统科学
    • 9 篇 化学
  • 41 篇 管理学
    • 21 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 12 篇 工商管理
    • 5 篇 公共管理
  • 26 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 11 篇 公共卫生与预防医...
    • 11 篇 药学(可授医学、理...
  • 6 篇 农学
    • 5 篇 作物学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 法学
  • 1 篇 教育学

主题

  • 13 篇 training
  • 9 篇 deep learning
  • 9 篇 machine learning
  • 8 篇 convolutional ne...
  • 6 篇 feature extracti...
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 neural networks
  • 4 篇 legged locomotio...
  • 4 篇 image segmentati...
  • 4 篇 anomaly detectio...
  • 4 篇 hospitals
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 predictive model...
  • 4 篇 real-time system...
  • 4 篇 embeddings
  • 3 篇 reliability
  • 3 篇 magnetic resonan...
  • 3 篇 task analysis

机构

  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 stream data anal...
  • 10 篇 department of st...
  • 7 篇 insight centre f...
  • 7 篇 novosibirsk stat...
  • 6 篇 institute for ma...
  • 5 篇 science foundati...
  • 5 篇 machine learning...
  • 5 篇 school of comput...
  • 5 篇 national enginee...
  • 4 篇 machine learning...
  • 4 篇 department of st...
  • 4 篇 machine learning...
  • 4 篇 center for machi...
  • 4 篇 institute of adv...
  • 4 篇 science foundati...
  • 4 篇 department artif...
  • 4 篇 data analytics g...
  • 4 篇 data and web sci...

作者

  • 16 篇 bjoern m. eskofi...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 8 篇 lawlor aonghus
  • 8 篇 zanca dario
  • 8 篇 eskofier bjoern
  • 7 篇 eskofier bjoern ...
  • 7 篇 srinivasulu redd...
  • 7 篇 jochen klucken
  • 7 篇 belton niamh
  • 7 篇 curran kathleen ...
  • 6 篇 scholtes ingo
  • 6 篇 schwinn leo
  • 6 篇 christopher muts...
  • 6 篇 robert richer
  • 6 篇 scharr hanno
  • 6 篇 schmidt-thieme l...
  • 5 篇 arne küderle

语言

  • 204 篇 英文
  • 35 篇 其他
  • 2 篇 中文
检索条件"机构=Data Analytics and Machine Learning"
239 条 记 录,以下是151-160 订阅
排序:
Reproducing kernel Hilbert space, Mercer's theorem, eigenfunctions, Nyström method, and use of kernels in machine learning: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on kernels, kernel methods, and related fields. We start with reviewing the history of kernels in functional analysis and machine learning. Then, Mercer kernel, Hilbert and Banach s... 详细信息
来源: 评论
Generative Adversarial Networks and adversarial autoencoders: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Generative Adversarial Network (GAN), adversarial autoencoders, and their variants. We start with explaining adversarial learning and the vanilla GAN. Then, we explain the condit... 详细信息
来源: 评论
KKT conditions, first-order and second-order optimization, and distributed optimization: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Karush-Kuhn-Tucker (KKT) conditions, first-order and second-order numerical optimization, and distributed optimization. After a brief review of history of optimization, we start ... 详细信息
来源: 评论
Restricted Boltzmann machine and Deep Belief Network: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on Boltzmann machine (BM), Restricted Boltzmann machine (RBM), and Deep Belief Network (DBN). We start with the required background on probabilistic graphical models, Markov random ... 详细信息
来源: 评论
Johnson-lindenstrauss lemma, linear and nonlinear random projections, random fourier features, and random kitchen sinks: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on the Johnson-Lindenstrauss (JL) lemma and linear and nonlinear random projections. We start with linear random projection and then justify its correctness by JL lemma and its proo... 详细信息
来源: 评论
System Design for a data-driven and Explainable Customer Sentiment Monitor
arXiv
收藏 引用
arXiv 2021年
作者: Nguyen, An Foerstel, Stefan Kittler, Thomas Kurzyukov, Andrey Schwinn, Leo Zanca, Dario Hipp, Tobias Sun, Da Jun Schrapp, Michael Rothgang, Eva Eskofier, Bjoern Machine Learning and Data Analytics Lab Friedrich-Alexander-Universität Erlangen-Nürnberg Germany University of Applied Sciences Amberg Weiden Germany Siemens Healthcare GmbH Germany Siemens Shanghai Medical Equipment Ltd. China infoteam Software AG Germany
The most important goal of customer services is to keep the customer satisfied. However, service resources are always limited and must be prioritized. Therefore, it is important to identify customers who potentially b... 详细信息
来源: 评论
Uniform manifold approximation and projection (UMAP) and its variants: Tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
Uniform Manifold Approximation and Projection (UMAP) is one of the state-of-the-art methods for dimensionality reduction and data visualization. This is a tutorial and survey paper on UMAP and its variants. We start w... 详细信息
来源: 评论
Sufficient dimension reduction for high-dimensional regression and low-dimensional embedding: tutorial and survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science & David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper on various methods for Sufficient Dimension Reduction (SDR). We cover these methods with both statistical high-dimensional regression perspective and machine learning approach for d... 详细信息
来源: 评论
End-to-end simultaneous learning of single-particle orientation and 3D map reconstruction from cryo-electron microscopy data
arXiv
收藏 引用
arXiv 2021年
作者: Nashed, Youssef S.G. Poitevin, Frederic Gupta, Harshit Woollard, Geoffrey Kagan, Michael Yoon, Chuck Ratner, Daniel Machine Learning Initiative SLAC National Accelerator Laboratory United States Department of LCLS Data Analytics SLAC National Accelerator Laboratory United States Department of Mathematics University of British Columbia Canada Fundamental Physics Directorate SLAC National Accelerator Laboratory United States
Cryogenic electron microscopy (cryo-EM) provides images from different copies of the same biomolecule in arbitrary orientations. Here, we present an end-to-end unsupervised approach that learns individual particle ori... 详细信息
来源: 评论
Laplacian-Based Dimensionality Reduction Including Spectral Clustering, Laplacian Eigenmap, Locality Preserving Projection, Graph Embedding, and Diffusion Map: Tutorial and Survey
arXiv
收藏 引用
arXiv 2021年
作者: Ghojogh, Benyamin Ghodsi, Ali Karray, Fakhri Crowley, Mark Department of Electrical and Computer Engineering Machine Learning Laboratory University of Waterloo WaterlooON Canada Department of Statistics and Actuarial Science David R. Cheriton School of Computer Science Data Analytics Laboratory University of Waterloo WaterlooON Canada Department of Electrical and Computer Engineering Centre for Pattern Analysis and Machine Intelligence University of Waterloo WaterlooON Canada
This is a tutorial and survey paper for nonlinear dimensionality and feature extraction methods which are based on the Laplacian of graph of data. We first introduce adjacency matrix, definition of Laplacian matrix, a... 详细信息
来源: 评论