咨询与建议

限定检索结果

文献类型

  • 127 篇 期刊文献
  • 115 篇 会议

馆藏范围

  • 242 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 142 篇 工学
    • 103 篇 计算机科学与技术...
    • 89 篇 软件工程
    • 40 篇 生物工程
    • 36 篇 信息与通信工程
    • 32 篇 生物医学工程(可授...
    • 21 篇 光学工程
    • 19 篇 控制科学与工程
    • 16 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 5 篇 化学工程与技术
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
  • 95 篇 理学
    • 49 篇 数学
    • 43 篇 生物学
    • 28 篇 统计学(可授理学、...
    • 21 篇 物理学
    • 11 篇 系统科学
    • 9 篇 化学
  • 41 篇 管理学
    • 21 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 12 篇 工商管理
    • 5 篇 公共管理
  • 27 篇 医学
    • 20 篇 临床医学
    • 19 篇 基础医学(可授医学...
    • 13 篇 公共卫生与预防医...
    • 11 篇 药学(可授医学、理...
  • 5 篇 农学
    • 4 篇 作物学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 法学
  • 2 篇 教育学

主题

  • 13 篇 training
  • 11 篇 machine learning
  • 9 篇 deep learning
  • 8 篇 convolutional ne...
  • 6 篇 feature extracti...
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 neural networks
  • 4 篇 legged locomotio...
  • 4 篇 image segmentati...
  • 4 篇 anomaly detectio...
  • 4 篇 hospitals
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 predictive model...
  • 4 篇 real-time system...
  • 4 篇 embeddings
  • 4 篇 estimation
  • 3 篇 reliability
  • 3 篇 magnetic resonan...

机构

  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 stream data anal...
  • 10 篇 department of st...
  • 7 篇 insight centre f...
  • 7 篇 novosibirsk stat...
  • 6 篇 machine learning...
  • 6 篇 institute for ma...
  • 5 篇 science foundati...
  • 5 篇 department artif...
  • 5 篇 school of comput...
  • 5 篇 national enginee...
  • 4 篇 machine learning...
  • 4 篇 department of st...
  • 4 篇 machine learning...
  • 4 篇 center for machi...
  • 4 篇 institute of adv...
  • 4 篇 science foundati...
  • 4 篇 data analytics g...
  • 4 篇 data and web sci...

作者

  • 16 篇 bjoern m. eskofi...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 9 篇 eskofier bjoern
  • 8 篇 lawlor aonghus
  • 8 篇 zanca dario
  • 8 篇 eskofier bjoern ...
  • 7 篇 srinivasulu redd...
  • 7 篇 jochen klucken
  • 7 篇 belton niamh
  • 7 篇 curran kathleen ...
  • 6 篇 scholtes ingo
  • 6 篇 schwinn leo
  • 6 篇 christopher muts...
  • 6 篇 robert richer
  • 6 篇 scharr hanno
  • 6 篇 schmidt-thieme l...
  • 5 篇 arne küderle

语言

  • 226 篇 英文
  • 16 篇 其他
  • 1 篇 中文
检索条件"机构=Data Analytics and Machine Learning"
242 条 记 录,以下是181-190 订阅
排序:
ICDAR 2021 competition on on-line signature verification
arXiv
收藏 引用
arXiv 2021年
作者: Tolosana, Ruben Vera-Rodriguez, Ruben Gonzalez-Garcia, Carlos Fierrez, Julian Rengifo, Santiago Morales, Aythami Ortega-Garcia, Javier Ruiz-Garcia, Juan Carlos Romero-Tapiador, Sergio Jiang, Jiajia Lai, Songxuan Jin, Lianwen Zhu, Yecheng Galbally, Javier Diaz, Moises Ferrer, Miguel Angel Gomez-Barrero, Marta Hodashinsky, Ilya Sarin, Konstantin Slezkin, Artem Bardamova, Marina Svetlakov, Mikhail Saleem, Mohammad Szücs, Cintia Lia Kovari, Bence Pulsmeyer, Falk Wehbi, Mohamad Zanca, Dario Ahmad, Sumaiya Mishra, Sarthak Jabin, Suraiya Biometrics and Data Pattern Analytics Lab UAM Spain South China University of Technology China Guangdong Artificial Intelligence and Digital Economy Laboratory China European Commission Joint Research Centre Italy Universidad del Atlantico Medio Spain Universidad de las Palmas de Gran Canaria Spain Hochschule Ansbach Germany Tomsk State University of Control Systems and Radioelectronics Russia Budapest University of Technology and Economics Hungary Machine Learning and Data Analytics Lab FAU Germany Jamia Millia Islamia India
This paper describes the experimental framework and results of the ICDAR 2021 Competition on On-Line Signature Verification (SVC 2021). The goal of SVC 2021 is to evaluate the limits of on-line signature verification ... 详细信息
来源: 评论
Importance of Wearable Health Monitoring Systems Using IoMT;Requirements, Advantages, Disadvantages and Challenges
Importance of Wearable Health Monitoring Systems Using IoMT;...
收藏 引用
International Symposium on Computational Intelligence and Informatics
作者: Fahime Khozeimeh Mohamad Roshanzamir Afshin Shoeibi Mohammad Tayarani Darbandy Roohallah Alizadehsani Hamid Alinejad-Rokny Davood Ahmadian Abbas Khosravi Saeid Nahavandi Institute for Intelligent Systems Research and Innovation (IISRI) Deakin University Victoria Australia Department of Computer Engineering Fasa University Fasa Iran Internship in Health Data Analytics Program AI-enabled Processes (AIP) Research Centre Macquarie University Sydney Australia School of Architecture Islamic Azad University Taft Taft Iran BioMedical Machine Learning Lab The Graduate School of Biomedical Engineering UNSW Sydney Sydney NSW Australia Faculty of Mathematics Statistics and Computer Sciences University of Tabriz Tabriz Iran
Providing better quality of service is one of the most important goals in medical/healthcare systems. The services provided should have features such as low latency, appropriate geographic distribution, and real-time ... 详细信息
来源: 评论
Optimising knee injury detection with spatial attention and validating localisation ability
arXiv
收藏 引用
arXiv 2021年
作者: Belton, Niamh Welaratne, Ivan Dahlan, Adil Hearne, Ronan T. Hagos, Misgina Tsighe Lawlor, Aonghus Curran, Kathleen M. Science Foundation Ireland Centre for Research Training in Machine Learning School of Medicine University College Dublin Department of Radiology Mater Misericordiae University Hospital Dublin Ireland School of Electronic Engineering University College Dublin School of Computer Science University College Dublin Insight Centre for Data Analytics University College Dublin Dublin Ireland
This work employs a pre-trained, multi-view Convolutional Neural Network (CNN) with a spatial attention block to optimise knee injury detection. An open-source Magnetic Resonance Imaging (MRI) data set with image-leve... 详细信息
来源: 评论
Impact of Distributed Training on Mask R-CNN Model Performance for Image Segmentation
Impact of Distributed Training on Mask R-CNN Model Performan...
收藏 引用
Emerging Trends in Information Technology and Engineering (ic-ETITE), Conference on
作者: Mercy Prasanna Ranjit Gopinath Ganapathy Ranjit Frederick Manuel AI & Machine Learning Microsoft Corporation India Ltd Bangalore India School of Computer Science and Engineering Bharathidasan University Trichy India Data Analytics & AI ITC Infotech India Ltd Bangalore India
The paper compares and discusses the impact of distributed deep learning training using the Horovod framework on the performance metrics of image segmentation model trained using the Mask R-CNN (Region-based Convoluti... 详细信息
来源: 评论
Watch your Up-Convolution: CNN Based Generative Deep Neural Networks are Failing to Reproduce Spectral Distributions
arXiv
收藏 引用
arXiv 2020年
作者: Durall, Ricard Keuper, Margret Keuper, Janis Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany Data- and Webscience Group University Mannheim Germany IWR University of Heidelberg Germany Institute for Machine Learning and Analytics Offenburg University Germany
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show ... 详细信息
来源: 评论
Problems and Prospectives of Big data Storage and Processing Standartization
Problems and Prospectives of Big Data Storage and Processing...
收藏 引用
IEEE Region 8 International Conference on Computational Technologies in Electrical and Electronics Engineering, SIBIRCON
作者: Evgeniy N. Pavlovskiy Stream Data Analytics and Machine Learning lab Novosibirsk State University Novosibirsk Russia
In the paper, we analyze the problem of standardization in the domain of storage and processing of big data in the application to the Internet of things. We highlight the underlying problems of big data; analyze the s... 详细信息
来源: 评论
Development of water flood model for oil production enhancement
Development of water flood model for oil production enhancem...
收藏 引用
Science and Artificial Intelligence conference (S.A.I.ence)
作者: Jetina J. Tsvaki Dmitry O. Tailakov Evgeniy N. Pavlovskiy Novosibirsk State University Novosibirsk Russia Laboratory for Fundamentals of Energy Technologies Kutateladze Institute of Thermophysics SB RAS Novosibirsk Russia Stream Data Analytics and Machine Learning Laboratory Novosibirsk State University Novosibirsk Russia
Main goal of any industry is to increase productivity which in oil and gas field is to increase reservoir oil asset by producing oil in an effective and economically efficient manner. The objective of the study is to ... 详细信息
来源: 评论
Watch Your Up-Convolution: CNN Based Generative Deep Neural Networks Are Failing to Reproduce Spectral Distributions
Watch Your Up-Convolution: CNN Based Generative Deep Neural ...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Ricard Durall Margret Keuper Janis Keuper Competence Center High Performance Computing Fraunhofer ITWM Kaiserslautern Germany IWR University of Heidelberg Germany Data and Web Science Group University of Mannheim Germany Institute for Machine Learning and Analytics Offenburg University Germany
Generative convolutional deep neural networks, e.g. popular GAN architectures, are relying on convolution based up-sampling methods to produce non-scalar outputs like images or video sequences. In this paper, we show ... 详细信息
来源: 评论
Deep reinforcement learning for motion planning of mobile robots
arXiv
收藏 引用
arXiv 2019年
作者: Butyrev, Leonid Edelhäußer, Thorsten Mutschler, Christopher Fraunhofer Institute for Integrated Circuits Iis Precise Positioning and Analytics Department Machine Learning and Information Fusion Group Nuremberg Germany Computer Science Department Machine Learning and Data Analytics Lab Erlangen Germany
This paper presents a novel motion and trajectory planning algorithm for nonholonomic mobile robots that uses recent advances in deep reinforcement learning. Starting from a random initial state, i.e., position, veloc... 详细信息
来源: 评论
A Deep Generative Model for Molecule Optimization via One Fragment Modification
arXiv
收藏 引用
arXiv 2020年
作者: Chen, Ziqi Min, Martin Renqiang Parthasarathy, Srinivasan Ning, Xia The Ohio State University ColumbusOH43210 United States Machine Learning Department NEC Labs America PrincetonNJ08540 United States Translational Data Analytics Institute The Ohio State University ColumbusOH43210 United States
Molecule optimization is a critical step in drug development to improve desired properties of drug candidates through chemical modification. We developed a novel deep generative model Modof over molecular graphs for m... 详细信息
来源: 评论