咨询与建议

限定检索结果

文献类型

  • 124 篇 期刊文献
  • 115 篇 会议

馆藏范围

  • 239 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 139 篇 工学
    • 102 篇 计算机科学与技术...
    • 89 篇 软件工程
    • 40 篇 生物工程
    • 35 篇 信息与通信工程
    • 31 篇 生物医学工程(可授...
    • 21 篇 光学工程
    • 19 篇 控制科学与工程
    • 15 篇 电气工程
    • 12 篇 电子科学与技术(可...
    • 5 篇 土木工程
    • 5 篇 化学工程与技术
    • 4 篇 机械工程
    • 4 篇 仪器科学与技术
    • 4 篇 建筑学
  • 94 篇 理学
    • 48 篇 数学
    • 43 篇 生物学
    • 27 篇 统计学(可授理学、...
    • 21 篇 物理学
    • 11 篇 系统科学
    • 9 篇 化学
  • 41 篇 管理学
    • 21 篇 图书情报与档案管...
    • 16 篇 管理科学与工程(可...
    • 12 篇 工商管理
    • 5 篇 公共管理
  • 26 篇 医学
    • 19 篇 临床医学
    • 18 篇 基础医学(可授医学...
    • 11 篇 公共卫生与预防医...
    • 11 篇 药学(可授医学、理...
  • 6 篇 农学
    • 5 篇 作物学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 法学
  • 1 篇 教育学

主题

  • 13 篇 training
  • 9 篇 deep learning
  • 9 篇 machine learning
  • 8 篇 convolutional ne...
  • 6 篇 feature extracti...
  • 5 篇 surveys
  • 5 篇 generative adver...
  • 5 篇 neural networks
  • 4 篇 legged locomotio...
  • 4 篇 image segmentati...
  • 4 篇 anomaly detectio...
  • 4 篇 hospitals
  • 4 篇 convolution
  • 4 篇 computational mo...
  • 4 篇 predictive model...
  • 4 篇 real-time system...
  • 4 篇 embeddings
  • 3 篇 reliability
  • 3 篇 magnetic resonan...
  • 3 篇 task analysis

机构

  • 14 篇 department of el...
  • 14 篇 department of el...
  • 10 篇 stream data anal...
  • 10 篇 department of st...
  • 7 篇 insight centre f...
  • 7 篇 novosibirsk stat...
  • 6 篇 institute for ma...
  • 5 篇 science foundati...
  • 5 篇 machine learning...
  • 5 篇 school of comput...
  • 5 篇 national enginee...
  • 4 篇 machine learning...
  • 4 篇 department of st...
  • 4 篇 machine learning...
  • 4 篇 center for machi...
  • 4 篇 institute of adv...
  • 4 篇 science foundati...
  • 4 篇 department artif...
  • 4 篇 data analytics g...
  • 4 篇 data and web sci...

作者

  • 16 篇 bjoern m. eskofi...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 8 篇 lawlor aonghus
  • 8 篇 zanca dario
  • 8 篇 eskofier bjoern
  • 7 篇 eskofier bjoern ...
  • 7 篇 srinivasulu redd...
  • 7 篇 jochen klucken
  • 7 篇 belton niamh
  • 7 篇 curran kathleen ...
  • 6 篇 scholtes ingo
  • 6 篇 schwinn leo
  • 6 篇 christopher muts...
  • 6 篇 robert richer
  • 6 篇 scharr hanno
  • 6 篇 schmidt-thieme l...
  • 5 篇 arne küderle

语言

  • 204 篇 英文
  • 35 篇 其他
  • 2 篇 中文
检索条件"机构=Data Analytics and Machine Learning"
239 条 记 录,以下是31-40 订阅
排序:
Stream-based Active learning by Exploiting Temporal Properties in Perception with Temporal Predicted Loss
arXiv
收藏 引用
arXiv 2023年
作者: Schmidt, Sebastian Günnemann, Stephan BMW Group Munich Germany Technical University of Munich Data Analytics and Machine Learning Group Munich Germany
Active learning (AL) reduces the amount of labeled data needed to train a machine learning model by intelligently choosing which instances to label. Classic pool-based AL requires all data to be present in a datacente... 详细信息
来源: 评论
FewSOME: One-Class Few Shot Anomaly Detection with Siamese Networks
FewSOME: One-Class Few Shot Anomaly Detection with Siamese N...
收藏 引用
2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
作者: Belton, Niamh Hagos, Misgina Tsighe Lawlor, Aonghus Curran, Kathleen M. Science Foundation Ireland Centre for Research Training in Machine Learning Ireland University College Dublin School of Medicine Ireland University College Dublin School of Computer Science Ireland University College Dublin Insight Centre for Data Analytics Dublin Ireland
Recent Anomaly Detection techniques have progressed the field considerably but at the cost of increasingly complex training pipelines. Such techniques require large amounts of training data, resulting in computational... 详细信息
来源: 评论
ConvLoRA and AdaBN Based Domain Adaptation via Self-Training
ConvLoRA and AdaBN Based Domain Adaptation via Self-Training
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Sidra Aleem Julia Dietlmeier Eric Arazo Suzanne Little SFI Research Centre for Machine Learning Dublin City University Ireland Insight SFI Research Centre for Data Analytics Dublin City University Ireland
Existing domain adaptation (DA) methods often involve pre-training on the source domain and fine-tuning on the target domain. For multi-target domain adaptation, having a dedicated/separate fine-tuned network for each... 详细信息
来源: 评论
The map equation goes neural: mapping network flows with graph neural networks  24
The map equation goes neural: mapping network flows with gra...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Christopher Blöcker Chester Tan Ingo Scholtes Data Analytics Group Department of Informatics University of Zurich Switzerland Chair of Machine Learning for Complex Networks Center for Artificial Intelligence and Data Science Julius-Maximilians-Universität Würzburg Germany
Community detection is an essential tool for unsupervised data exploration and revealing the organisational structure of networked systems. With a long history in network science, community detection typically relies ...
来源: 评论
Design and Implementation of a data Governance Framework and Platform: A Case Study of a National Research Organization of Thailand  20
Design and Implementation of a Data Governance Framework and...
收藏 引用
20th International Joint Conference on Computer Science and Software Engineering, JCSSE 2023
作者: Chanyachatchawan, Sapa Nasingkun, Krich Tumsangthong, Patipat Chata, Porntiwa Buranarach, Marut Socharoentum, Monsak National Electronics and Computer Technology Center Leveraging Technology Solutions Section Bangkok Thailand National Electronics and Computer Technology Center Strategic Analytics Networks with Machine Learning and Ai Research Bangkok Thailand National Electronics and Computer Technology Center Data Science and Analytics Research Group Bangkok Thailand Digital Government Development Agency Bangkok Thailand
In the current era of extensive data usage across industries, data collection, preservation, utilization, and organization has become more challenging and nuanced because it is necessary to consider critical concerns ... 详细信息
来源: 评论
Estimating fish weight growth in aquaponic farming through machine learning techniques
Estimating fish weight growth in aquaponic farming through m...
收藏 引用
Intelligent Technologies (CONIT), International Conference on
作者: Purushottam Kumar Pranav Tiwari U Srinivasulu Reddy CoE in Artificial Intelligence Machine Learning & Data Analytics Lab National Institute of Technology Trichy India Computer Science and Engineering Indian Institute of Information Technology Tiruchirappalli Trichy India Department of Computer Applications Machine Learning & Data Analytics Lab National Institute of Technology Trichy India
Due to the ever-growing population, rapid urbanization, unusual environmental change, and dwindling water supply, the food production from conventional farming techniques won’t be able to keep up with increasing food...
来源: 评论
Harnessing Ensemble machine learning Models for Timely Diagnosis of Breast Cancer Metastasis: A Case Study on CatBoost, XGBoost, and LGBM
Harnessing Ensemble Machine Learning Models for Timely Diagn...
收藏 引用
Annual Siberian Russian Workshop on Electron Devices and Materials (EDM)
作者: Minh Sao Khue Luu Santanu Banerjee Evgeniy N. Pavlovskiy Bair N. Tuchinov Stream Data Analytics and Machine Learning Laboratory Novosibirsk State University Novosibirsk Russia Indian Institute of Technology (IIT) Kharagpur Kharagpur West Bengal India
This study employs three advanced gradient boosting machine learning algorithms to assess potential disparities in healthcare delivery. We specifically investigate which factors contribute to a patient’s timely diagn... 详细信息
来源: 评论
p-value adjustment for monotonous, unbiased, and fast clustering comparison  23
p-value adjustment for monotonous, unbiased, and fast cluste...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Kai Klede Thomas Altstidl Dario Zanca Björn Eskofier Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander Universität Erlangen-Nürnberg Machine Learning and Data Analytics (MaD) Lab Friedrich-Alexander Universität Erlangen-Nürnberg and Translational Digital Health Group Institute of AI for Health Helmholtz Zentrum München
Popular metrics for clustering comparison, like the Adjusted Rand Index and the Adjusted Mutual Information, are type II biased. The Standardized Mutual Information removes this bias but suffers from counterintuitive ...
来源: 评论
Predicting Influential Higher-Order Patterns in Temporal Network data  14
Predicting Influential Higher-Order Patterns in Temporal Net...
收藏 引用
14th IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2022
作者: Gote, Christoph Perri, Vincenzo Scholtes, Ingo Data Analytics Group University of Zurich Zurich Switzerland Eth Zurich Systems Design Switzerland Julius-Maximilians-Universität Würzburg Chair of Machine Learning for Complex Networks Würzburg Germany
Networks are frequently used to model complex systems comprised of interacting elements. While edges capture the topology of direct interactions, the true complexity of many systems originates from higher-order patter... 详细信息
来源: 评论
NC-ALG: Graph-Based Active learning under Noisy Crowd  40
NC-ALG: Graph-Based Active Learning under Noisy Crowd
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Zhang, Wentao Wang, Yexin You, Zhenbang Li, Yang Cao, Gang Yang, Zhi Cui, Bin Center for Machine Learning Research Peking University China Key Lab of High Confidence Software Technologies Peking University China Institute of Advanced Algorithms Research Shanghai China Institute of Computational Social Science Peking University Qingdao China National Engineering Labratory for Big Data Analytics and Applications China TEG Tencent Inc. Department of Data Platform China Beijing Academy of Artificial Intelligence China
Graph Neural Networks (GNNs) have achieved great success in various data mining tasks but they heavily rely on a large number of annotated nodes, requiring considerable human efforts. Despite the effectiveness of exis... 详细信息
来源: 评论