咨询与建议

限定检索结果

文献类型

  • 6,102 篇 期刊文献
  • 4,922 篇 会议
  • 5 册 图书

馆藏范围

  • 11,029 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 7,406 篇 工学
    • 4,516 篇 计算机科学与技术...
    • 3,769 篇 软件工程
    • 1,566 篇 信息与通信工程
    • 861 篇 控制科学与工程
    • 835 篇 电气工程
    • 769 篇 生物工程
    • 751 篇 化学工程与技术
    • 711 篇 电子科学与技术(可...
    • 536 篇 光学工程
    • 521 篇 生物医学工程(可授...
    • 512 篇 机械工程
    • 361 篇 材料科学与工程(可...
    • 348 篇 仪器科学与技术
    • 304 篇 动力工程及工程热...
    • 287 篇 交通运输工程
    • 221 篇 建筑学
    • 216 篇 土木工程
  • 4,258 篇 理学
    • 2,075 篇 数学
    • 1,248 篇 物理学
    • 921 篇 生物学
    • 686 篇 统计学(可授理学、...
    • 593 篇 化学
    • 311 篇 系统科学
  • 1,898 篇 管理学
    • 1,095 篇 管理科学与工程(可...
    • 869 篇 图书情报与档案管...
    • 359 篇 工商管理
  • 517 篇 医学
    • 432 篇 临床医学
    • 306 篇 基础医学(可授医学...
    • 217 篇 药学(可授医学、理...
  • 276 篇 法学
    • 229 篇 社会学
  • 228 篇 农学
  • 156 篇 经济学
  • 86 篇 教育学
  • 32 篇 军事学
  • 30 篇 文学
  • 18 篇 艺术学
  • 1 篇 历史学

主题

  • 265 篇 semantics
  • 225 篇 feature extracti...
  • 209 篇 deep learning
  • 163 篇 data mining
  • 137 篇 computational mo...
  • 130 篇 training
  • 122 篇 machine learning
  • 115 篇 convolution
  • 114 篇 knowledge engine...
  • 101 篇 neural networks
  • 98 篇 image segmentati...
  • 97 篇 predictive model...
  • 95 篇 computer science
  • 90 篇 data models
  • 89 篇 object detection
  • 89 篇 reinforcement le...
  • 89 篇 accuracy
  • 87 篇 optimization
  • 86 篇 contrastive lear...
  • 82 篇 laboratories

机构

  • 403 篇 college of compu...
  • 306 篇 university of ch...
  • 257 篇 key laboratory o...
  • 174 篇 iccub universita...
  • 173 篇 infn sezione di ...
  • 171 篇 department of ph...
  • 167 篇 school of inform...
  • 158 篇 infn sezione di ...
  • 157 篇 horia hulubei na...
  • 152 篇 h.h. wills physi...
  • 151 篇 yandex school of...
  • 148 篇 van swinderen in...
  • 138 篇 universiteit maa...
  • 125 篇 massachusetts in...
  • 116 篇 national researc...
  • 113 篇 warsaw
  • 113 篇 university of ci...
  • 113 篇 university of ma...
  • 112 篇 université clerm...
  • 110 篇 lpnhe sorbonne u...

作者

  • 117 篇 beiter a.
  • 117 篇 arzymatov k.
  • 116 篇 barter w.
  • 114 篇 brundu d.
  • 110 篇 bellee v.
  • 102 篇 bowcock t.j.v.
  • 102 篇 casse g.
  • 101 篇 bobulska d.
  • 101 篇 blake t.
  • 101 篇 borsato m.
  • 101 篇 betancourt c.
  • 100 篇 belin s.
  • 97 篇 afsharnia h.
  • 95 篇 belavin v.
  • 91 篇 bediaga i.
  • 88 篇 cali s.
  • 85 篇 amato s.
  • 83 篇 baryshnikov f.
  • 80 篇 bjørn m.
  • 76 篇 niyato dusit

语言

  • 9,490 篇 英文
  • 1,302 篇 其他
  • 258 篇 中文
  • 6 篇 德文
  • 6 篇 法文
检索条件"机构=Data Engineering and Knowledge Engineering Key Laboratory"
11029 条 记 录,以下是761-770 订阅
排序:
Semi-Supervised Learning via Weight-aware Distillation under Class Distribution Mismatch
Semi-Supervised Learning via Weight-aware Distillation under...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Pan Du Suyun Zhao Zisen Sheng Cuiping Li Hong Chen Key Lab of Data Engineering and Knowledge Engineering of MOE Renmin University of China Renmin University of China Beijing China
Semi-Supervised Learning (SSL) under class distribution mismatch aims to tackle a challenging problem wherein unlabeled data contain lots of unknown categories unseen in the labeled ones. In such mismatch scenarios, t...
来源: 评论
The Role of Depth, Width, and Tree Size in Expressiveness of Deep Forest  27
The Role of Depth, Width, and Tree Size in Expressiveness of...
收藏 引用
27th European Conference on Artificial Intelligence, ECAI 2024
作者: Lyu, Shen-Huan Wu, Jin-Hui Zheng, Qin-Cheng Ye, Baoliu Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University China College of Computer Science and Software Engineering Hohai University China National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China
Random forests are classical ensemble algorithms that construct multiple randomized decision trees and aggregate their predictions using naive averaging. Zhou and Feng [51] further propose a deep forest algorithm with... 详细信息
来源: 评论
Influencing Factors of Healthy Aging Risk Assessed Using Biomarkers:A Life Course Perspective
收藏 引用
China CDC weekly 2024年 第11期6卷 219-224,I0014-I0017页
作者: Cedric Zhang Bo Lua Yajie Gao Jinming Li Xingqi Cao Xinwei Lyu Yinuo Tu Shuyi Jin Zuyun Liu Center for Clinical Big Data and Analytics of the Second Affiliated Hospital and Department of Big Data in Health Science School of Public Healththe Key Laboratory of Intelligent Preventive Medicine of Zhejiang ProvinceZhejiang University School of MedicineHangzhou CityZhejiang ProvinceChina Institute of Epidemiology and Health Care University College LondonLondonUK College of Chemical and Biological Engineering Zhejiang UniversityHangzhou CityZhejiang ProvinceChina
Assessing individual risks of healthy aging using biomarkers and identifying associated factors have become important areas of *** this study,we conducted a literature review of relevant publications between 2018 and ... 详细信息
来源: 评论
CARDnet: A denoiser based on contrast-aware and residual-dense block  19th
CARDnet: A denoiser based on contrast-aware and residual-den...
收藏 引用
19th Chinese Intelligent Systems Conference, CISC 2023
作者: Cai, Qiang Cao, Ying Wang, Chen Li, Haisheng Ma, Mengxu School of Computer Science and Engineering Beijing Technology and Business University Beijing100048 China Beijing Key Laboratory of Big Data Technology for Food Safety Beijing100048 China National Engineering Laboratory for Agri-Product Quality Traceability Beijing100048 China
In recent years, deep convolutional neural networks have shown good performance on images with spatially invariant noise, but their performance is limited on real-world noisy images. In order to improve the practicali... 详细信息
来源: 评论
Utilizing Sub-Topic Units for Patent Prior-Art Search
收藏 引用
Chinese Journal of Electronics 2025年 第3期23卷 480-483页
作者: Dong Zhou Jianxun Liu Sanrong Zhang Key Laboratory of Knowledge Processing and Networked Manufacturing & School of Computer Science and Engineering Hunan University of Science and Technology Xiangtan Hunan China
One of the defining challenges in patent prior-art search is the problem of representing a long, technical document as a query. Previously work on this problem has concentrated on single query representations of the p... 详细信息
来源: 评论
Efficient Homomorphic Approximation of Max Pooling for Privacy-Preserving Deep Learning  6th
Efficient Homomorphic Approximation of Max Pooling for Pri...
收藏 引用
6th International Conference on Machine Learning for Cyber Security, ML4CS 2024
作者: Zhang, Peng Qiu, Dongyan Duan, Ao Liu, Hongwei The Guangdong Key Laboratory of Intelligent Information Processing College of Electronics and Information Engineering Shenzhen University Guangdong Shenzhen518060 China College of Big Data and Internet Shenzhen Technology University Guangdong Shenzhen518118 China
Privacy-Preserving Deep Learning (PPDL) using Fully Homomorphic Encryption (FHE) addresses potential data privacy exposure risks associated with deploying deep learning models in untrusted cloud environments. FHE-base... 详细信息
来源: 评论
Confidence-aware Contrastive Learning for Selective Classification  41
Confidence-aware Contrastive Learning for Selective Classifi...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Wu, Yu-Chang Lyu, Shen-Huan Shang, Haopu Wang, Xiangyu Qian, Chao National Key Laboratory for Novel Software Technology Nanjing University China School of Artificial Intelligence Nanjing University China Key Laboratory of Water Big Data Technology Ministry of Water Resources Hohai University China College of Computer Science and Software Engineering Hohai University China
Selective classification enables models to make predictions only when they are sufficiently confident, aiming to enhance safety and reliability, which is important in high-stakes scenarios. Previous methods mainly use... 详细信息
来源: 评论
ReconBoost: Boosting Can Achieve Modality Reconcilement  41
ReconBoost: Boosting Can Achieve Modality Reconcilement
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Hua, Cong Xu, Qianqian Bao, Shilong Yang, Zhiyong Huang, Qingming Key Laboratory of Intelligent Information Processing Institute of Computing Technology Chinese Academy of Sciences Beijing China School of Computer Science and Technology University of Chinese Academy of Sciences Beijing China Institute of Information Engineering Chinese Academy of Sciences Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Key Laboratory of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing China
This paper explores a novel multi-modal alternating learning paradigm pursuing a reconciliation between the exploitation of uni-modal features and the exploration of cross-modal interactions. This is motivated by the ... 详细信息
来源: 评论
A Fine-Grained Anomaly Detection Method Fusing Isolation Forest and knowledge Graph Reasoning  19th
A Fine-Grained Anomaly Detection Method Fusing Isolation For...
收藏 引用
19th International Conference on Web Information Systems and Applications, WISA 2022
作者: Xu, Jie Zhou, Jiantao College of Computer Science Engineering Research Center of Ecological Big Data Ministry of Education National and Local Joint Engineering Research Center of Mongolian Intelligent Information Processing Technology Inner Mongolia Cloud Computing and Service Software Engineering Laboratory Inner Mongolia Social Computing and Data Processing Key Laboratory Inner Mongolia Discipline Inspection and Supervision Big Data Key Laboratory Inner Mongolia Big Data Analysis Technology Engineering Laboratory Inner Mongolia University Hohhot China
Anomaly detection aims to find outliers data that do not conform to expected behaviors in a specific scenario, which is indispensable and critical in current safety environments related studies. However, when performi... 详细信息
来源: 评论
Spatial-temporal changes and driving factors of eco-environmental quality in the Three-North region of China
收藏 引用
Journal of Arid Land 2023年 第3期15卷 231-252页
作者: LONG Yi JIANG Fugen DENG Muli WANG Tianhong SUN Hua Research Center of Forestry Remote Sensing&Information Engineering Central South University of Forestry and TechnologyChangsha 410004China Key Laboratory of Forestry Remote Sensing Based Big Data&Ecological Security for Hunan Province Changsha 410004China Key Laboratory of National Forestry&Grassland Administration on Forest Resources Management and Monitoring in Southern Area Changsha 410004China
Eco-environmental quality is a measure of the suitability of the ecological environment for human survival and socioeconomic *** the spatial-temporal distribution and variation trend of eco-environmental quality is es... 详细信息
来源: 评论