咨询与建议

限定检索结果

文献类型

  • 18 篇 会议

馆藏范围

  • 18 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 11 篇 工学
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 控制科学与工程
    • 4 篇 计算机科学与技术...
    • 3 篇 软件工程
    • 2 篇 信息与通信工程
    • 1 篇 航空宇航科学与技...
    • 1 篇 安全科学与工程
  • 8 篇 理学
    • 5 篇 数学
    • 3 篇 系统科学
    • 1 篇 统计学(可授理学、...
  • 2 篇 管理学
    • 2 篇 图书情报与档案管...

主题

  • 5 篇 target tracking
  • 5 篇 kalman filters
  • 3 篇 particle measure...
  • 3 篇 covariance matri...
  • 3 篇 equations
  • 2 篇 measurement erro...
  • 2 篇 proposals
  • 2 篇 bandpass filters
  • 2 篇 software measure...
  • 2 篇 bayesian methods
  • 2 篇 collision avoida...
  • 2 篇 approximation me...
  • 2 篇 time measurement
  • 2 篇 estimation
  • 2 篇 filtering algori...
  • 1 篇 formations
  • 1 篇 noise measuremen...
  • 1 篇 function approxi...
  • 1 篇 software algorit...
  • 1 篇 filtering

机构

  • 6 篇 data fusion algo...
  • 5 篇 data fusion algo...
  • 4 篇 data fusion algo...
  • 1 篇 department senso...
  • 1 篇 dept. sensor dat...
  • 1 篇 dept. sensor dat...
  • 1 篇 data fusion algo...
  • 1 篇 intelligent sens...
  • 1 篇 karlsruhe
  • 1 篇 intelligent sens...
  • 1 篇 fgan research in...
  • 1 篇 fgan research in...
  • 1 篇 d-53343 wachtber...
  • 1 篇 data fusion algo...
  • 1 篇 dept. sensor dat...
  • 1 篇 data fusion algo...
  • 1 篇 intelligent sens...

作者

  • 8 篇 fränken dietrich
  • 7 篇 dietrich franken
  • 3 篇 feldmann michael
  • 3 篇 hanebeck uwe d.
  • 3 篇 uwe d. hanebeck
  • 3 篇 vesa klumpp
  • 2 篇 felix sawo
  • 2 篇 michael feldmann
  • 2 篇 klumpp vesa
  • 1 篇 schmidt m.
  • 1 篇 d. franken
  • 1 篇 m. ulmke
  • 1 篇 baum marcus
  • 1 篇 hüpper andreas
  • 1 篇 ulmke m.
  • 1 篇 frederik beutler
  • 1 篇 fränken d.
  • 1 篇 koch wolfgang
  • 1 篇 julian horst
  • 1 篇 m. schmidt

语言

  • 18 篇 英文
检索条件"机构=Data Fusion Algorithms & Software"
18 条 记 录,以下是1-10 订阅
排序:
Unified tracking and fusion for airborne collision avoidance using log-polar coordinates
Unified tracking and fusion for airborne collision avoidance...
收藏 引用
15th International Conference on Information fusion, fusion 2012
作者: Fränken, Dietrich Hüpper, Andreas Data Fusion Algorithms and Software Cassidian D-89077 Ulm Germany
Collision avoidance applications require state estimators that are able to deliver estimates of relevant quantities with sufficient quality under hard real-time constraints. In this paper, we will present a unified ap... 详细信息
来源: 评论
Unified tracking and fusion for airborne collision avoidance using log-polar coordinates
Unified tracking and fusion for airborne collision avoidance...
收藏 引用
International Conference on Information fusion
作者: Dietrich Fränken Andreas Hüpper Data Fusion Algorithms & Software Cassidian Ulm Germany
Collision avoidance applications require state estimators that are able to deliver estimates of relevant quantities with sufficient quality under hard real-time constraints. In this paper, we will present a unified ap... 详细信息
来源: 评论
The sliced Gaussian Mixture Filter with adaptive state decomposition depending on linearization error
The sliced Gaussian Mixture Filter with adaptive state decom...
收藏 引用
作者: Klumpp, Vesa Beutler, Frederik Hanebeck, Uwe D. Fränken, Dietrich Germany Data Fusion Algorithms and Software EADS Deutschland GmbH D-89077 Ulm Germany
In this paper, a novel nonlinear/nonlinear model decomposition for the Sliced Gaussian Mixture Filter is presented. Based on the level of nonlinearity of the model, the overall estimation problem is decomposed into a ... 详细信息
来源: 评论
Extended object and group tracking: A comparison of random matrices and random hypersurface models
Extended object and group tracking: A comparison of random m...
收藏 引用
40th Jahrestagung der Gesellschaft fur Informatik e.V. (GI): Service Science - Neue Perspektiven fur die Informatik, INFORMATIK 2010
作者: Baum, Marcus Feldmann, Michael Fränken, Dietrich Hanebeck, Uwe D. Koch, Wolfgang Karlsruhe Germany Dept. Sensor Data and Information Fusion Fraunhofer FKIE Wachtberg Germany Data Fusion Algorithms and Software EADS Deutschland GmbH Ulm Germany
Based on previous work of the authors, this paper provides a comparison of two different tracking methodologies for extended objects and group targets, where the true shape of the extent is approximated by an ellipsoi...
来源: 评论
The Sliced Gaussian Mixture Filter with adaptive state decomposition depending on linearization error
The Sliced Gaussian Mixture Filter with adaptive state decom...
收藏 引用
International Conference on Information fusion
作者: Vesa Klumpp Frederik Beutler Uwe D. Hanebeck Dietrich Franken Intelligent Sensor-Actuator-Systems Laboratory (ISAS) Institute of Anthropomatics Karlsruhe Institute of Technology Germany Data Fusion Algorithms and Software EADS Deutschland GmbH Ulm Germany
In this paper, a novel nonlinear/nonlinear model decomposition for the Sliced Gaussian Mixture Filter is presented. Based on the level of nonlin-earity of the model, the overall estimation problem is decomposed into a... 详细信息
来源: 评论
Tracking of extended objects and group targets using random matrices-a performance analysis
Tracking of extended objects and group targets using random ...
收藏 引用
39th Jahrestagung der Gesellschaft fur Informatik e.V. (GI): Im Focus das Leben, INFORMATIK 2009
作者: Feldmann, Michael Fränken, Dietrich Dept. Sensor Data and Information Fusion FGAN-FKIE Wachtberg Germany Data Fusion Algorithms and Software EADS Deutschland GmbH Ulm Germany
The task of tracking extended objects or (partly) unresolvable group targets raises new challenges for both data association and track maintenance. Due to limited sensor resolution capabilities, group targets (i. e., ... 详细信息
来源: 评论
Advances on Tracking of Extended Objects and Group Targets using Random Matrices
Advances on Tracking of Extended Objects and Group Targets u...
收藏 引用
International Conference on Information fusion
作者: Michael Feldmann Dietrich Franken FGAN Research Institute for Communication Information Processing and Ergonomics (FKIE) Data Fusion Algorithms & Software EADS Deutschland GmbH
The task of tracking extended objects or (partly) unresolvable group targets raises new challenges for both data association and track maintenance. Due to limited sensor resolution capabilities, group targets (i. e., ... 详细信息
来源: 评论
Extension of the Sliced Gaussian Mixture Filter with application to cooperative passive target tracking
Extension of the Sliced Gaussian Mixture Filter with applica...
收藏 引用
International Conference on Information fusion
作者: Julian Horst Felix Sawo Vesa Klumpp Uwe D. Hanebeck Dietrich Franken Intelligent Sensor-Actuator-Systems Laboratory (ISAS) Institute of Anthropomatics Universität Karlsruhe Germany Data Fusion Algorithms and Software EADS Deutschland GmbH Ulm Germany
This paper copes with the problem of nonlinear Bayesian state estimation. A nonlinear filter, the sliced Gaussian mixture filter (SGMF), employs linear substructures in the nonlinear measurement and prediction model i... 详细信息
来源: 评论
The sliced gaussian mixture filter for efficient nonlinear estimation
The sliced gaussian mixture filter for efficient nonlinear e...
收藏 引用
11th International Conference on Information fusion, fusion 2008
作者: Klumpp, Vesa Sawo, Felix Hanebeck, Uwe D. Fränken, Dietrich Germany Data Fusion Algorithms and Software EADS Deutschland GmbH D-89077 Ulm Germany
This paper addresses the efficient state estimation for mixed linear/nonlinear dynamic systems with noisy measurements. Based on a novel density representation - sliced Gaussian mixture density - the decomposition int... 详细信息
来源: 评论
Missed detection problems in the cardinalized probability hypothesis density filter
Missed detection problems in the cardinalized probability hy...
收藏 引用
11th International Conference on Information fusion, fusion 2008
作者: Ulmke, M. Fränken, D. Schmidt, M. Dept. Sensor Data and Information Fusion FGAN - FKIE D-53343 Wachtberg Germany Data Fusion Algorithms and Software EADS Deutschland GmbH D-89077 Ulm Germany
The cardinalized probability hypothesis density (CPHD) filter is a recursive Bayesian algorithm for estimating multiple target states with varying target number in clutter. In the present work, it is shown that a miss... 详细信息
来源: 评论