咨询与建议

限定检索结果

文献类型

  • 60 篇 会议
  • 34 篇 期刊文献

馆藏范围

  • 94 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 57 篇 工学
    • 45 篇 计算机科学与技术...
    • 35 篇 软件工程
    • 15 篇 信息与通信工程
    • 10 篇 生物工程
    • 8 篇 控制科学与工程
    • 7 篇 光学工程
    • 5 篇 电气工程
    • 3 篇 动力工程及工程热...
    • 3 篇 网络空间安全
    • 2 篇 电子科学与技术(可...
    • 2 篇 建筑学
    • 2 篇 环境科学与工程(可...
    • 1 篇 机械工程
    • 1 篇 材料科学与工程(可...
    • 1 篇 土木工程
  • 35 篇 理学
    • 22 篇 数学
    • 11 篇 生物学
    • 11 篇 统计学(可授理学、...
    • 5 篇 物理学
    • 3 篇 系统科学
    • 1 篇 地质学
  • 25 篇 管理学
    • 16 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 3 篇 工商管理
    • 2 篇 公共管理
  • 6 篇 法学
    • 6 篇 社会学
  • 5 篇 医学
    • 3 篇 临床医学
    • 2 篇 基础医学(可授医学...
    • 2 篇 公共卫生与预防医...
  • 1 篇 经济学
    • 1 篇 应用经济学

主题

  • 5 篇 semantics
  • 4 篇 object detection
  • 3 篇 complex networks
  • 3 篇 data mining
  • 3 篇 population dynam...
  • 3 篇 training
  • 3 篇 intelligent syst...
  • 2 篇 reinforcement le...
  • 2 篇 task analysis
  • 2 篇 proposals
  • 2 篇 osteoporosis
  • 2 篇 space exploratio...
  • 2 篇 natural language...
  • 2 篇 face recognition
  • 2 篇 knowledge graph
  • 2 篇 genetic algorith...
  • 2 篇 feature extracti...
  • 2 篇 embeddings
  • 2 篇 bayesian methods
  • 2 篇 image classifica...

机构

  • 18 篇 key laboratory o...
  • 15 篇 school of cyber ...
  • 14 篇 school of comput...
  • 13 篇 college of mathe...
  • 12 篇 fujian provincia...
  • 11 篇 key lab. of inte...
  • 11 篇 school of comput...
  • 11 篇 key laboratory o...
  • 10 篇 peng cheng labor...
  • 10 篇 key laboratory o...
  • 9 篇 key laboratory o...
  • 8 篇 key laboratory o...
  • 7 篇 fujian provincia...
  • 6 篇 key laboratory o...
  • 6 篇 state key labora...
  • 6 篇 college of compu...
  • 5 篇 institute of inf...
  • 5 篇 institute of inf...
  • 5 篇 school of cyber ...
  • 4 篇 fujian key labor...

作者

  • 23 篇 huang qingming
  • 21 篇 xu qianqian
  • 16 篇 yang zhiyong
  • 13 篇 guo kun
  • 10 篇 cao xiaochun
  • 10 篇 bao shilong
  • 8 篇 yu zhiyong
  • 6 篇 qingming huang
  • 6 篇 qianqian xu
  • 6 篇 guo wenzhong
  • 5 篇 huang fangwan
  • 5 篇 wang zitai
  • 5 篇 zhiyong yang
  • 4 篇 xiaochun cao
  • 4 篇 luis delaossa
  • 4 篇 jiang yangbangya...
  • 4 篇 ke xiao
  • 4 篇 kun guo
  • 4 篇 meng benyuan
  • 4 篇 shilong bao

语言

  • 84 篇 英文
  • 8 篇 其他
  • 3 篇 中文
检索条件"机构=Data Mining and Intelligent Computing Laboratory"
94 条 记 录,以下是1-10 订阅
排序:
IDENTIFYMIX: AN EFFICIENT TWO-STAGE LEARNING APPROACH TO COMBATING LABEL NOISE
Journal of Applied and Numerical Optimization
收藏 引用
Journal of Applied and Numerical Optimization 2023年 第2期5卷 237-253页
作者: Tong, Kai Ke, Xiao Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing College of Computer and Data Science Fuzhou University Fuzhou350116 China Key Laboratory of Spatial Data Mining & Information Sharing Ministry of Education Fuzhou350003 China
Deep neural networks require correct label annotation during supervised learning. It is inevitable, however, that some labels are noisy during the labeling process. A deep neural network retains incorrect labels durin... 详细信息
来源: 评论
Accelerating Unsupervised Federated Graph Neural Networks via Semi-asynchronous Communication  18th
Accelerating Unsupervised Federated Graph Neural Networks vi...
收藏 引用
18th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2023
作者: Liao, Yuanming Wu, Duanji Lin, Pengyu Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Fujian Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China
Graph neural networks have shown excellent performance in many fields owing to their powerful processing ability of graph data. In recent years, federated graph neural network has become a reasonable solution due to t... 详细信息
来源: 评论
Generalized Self-Adaption Network for Domain Adaptation  2
Generalized Self-Adaption Network for Domain Adaptation
收藏 引用
2nd International Conference on Artificial Intelligence and intelligent Information Processing, AIIIP 2023
作者: Bian, Yongheng Ke, Xiao College of Computer and Data Science Fuzhou University Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing Fuzhou350116 China Key Laboratory of Spatial Data Mining & Information Sharing Ministry of Education Fuzhou350003 China
The purpose of domain adaptation is to transfer knowledge learned in the labeled source domain to unlabeled but related target domains without requiring a large number of target domain labels. The latest method of dom... 详细信息
来源: 评论
ABCD-HN: An Artificial Network Benchmark for Community Detection on Heterogeneous Networks  18th
ABCD-HN: An Artificial Network Benchmark for Community Dete...
收藏 引用
18th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2023
作者: Liu, Junjie Guo, Kun Wu, Ling Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China College of Computer and Data Science/College of Software Fuzhou University Fuzhou350108 China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China
Community detection is essential for identifying cohesive groups in complex networks. Artificial benchmarks are critical for evaluating community detection algorithms, offering controlled environments with known commu... 详细信息
来源: 评论
Few-Shot Object Detection Based on Generalized Features  2
Few-Shot Object Detection Based on Generalized Features
收藏 引用
2nd International Conference on Artificial Intelligence and intelligent Information Processing, AIIIP 2023
作者: Chen, Qiuqin Ke, Xiao College of Computer and Data Science Fuzhou University Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing Fuzhou350116 China Key Laboratory of Spatial Data Mining & Information Sharing Ministry of Education Fuzhou Fuzhou350003 China
Few-shot object detection aims to rapidly detect novel classes of objects using a minimal number of annotated instances. Compared to methods such as meta-learning, few-shot object detection based on transfer learning ... 详细信息
来源: 评论
Community Evolution Tracking Based on Core Node Extension and Edge Variation Discerning  17th
Community Evolution Tracking Based on Core Node Extension a...
收藏 引用
17th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2022
作者: Zhuang, Qifeng Yu, Zhiyong Guo, Kun College of Computer and Data Science Fuzhou University Fuzhou350108 China Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou350108 China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China
Communities exist anywhere in various complex networks, and community evolution tracking is one of the most well-liked areas of inquiry in the study of dynamic complex networks. Community evolution tracking has many a... 详细信息
来源: 评论
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmentation  38
AUCSeg: AUC-oriented Pixel-level Long-tail Semantic Segmenta...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Han, Boyu Xu, Qianqian Yang, Zhiyong Bao, Shilong Wen, Peisong Jiang, Yangbangyan Huang, Qingming Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China School of Computer Science and Tech. University of Chinese Academy of Sciences China Peng Cheng Laboratory China Key Laboratory of Big Data Mining and Knowledge Management CAS China
The Area Under the ROC Curve (AUC) is a well-known metric for evaluating instance-level long-tail learning problems. In the past two decades, many AUC optimization methods have been proposed to improve model performan...
来源: 评论
A Unified Stream and Batch Graph computing Model for Community Detection  17th
A Unified Stream and Batch Graph Computing Model for Commu...
收藏 引用
17th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2022
作者: Dai, Jinkun Wu, Ling Guo, Kun Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China College of Computer and Data Science Fuzhou University Fuzhou350108 China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China
An essential challenge in graph data analysis and mining is to simply and effectively deal with large-scale network data that is expanding dynamically. Although batch-based parallel graph computation frameworks have b... 详细信息
来源: 评论
Globally Consistent Vertical Federated Graph Autoencoder for Privacy-Preserving Community Detection  17th
Globally Consistent Vertical Federated Graph Autoencoder for...
收藏 引用
17th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2022
作者: Fang, Yutong Huang, Qingqing Ye, Enjie Guo, Wenzhong Guo, Kun Chen, Xiaoqi Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China College of Computer and Data Science/College of Software Fuzhou University Fuzhou350108 China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China
Community detection is a trendy area in research on complex network analysis and has a wide range of real-world applications, like advertising. As people become increasingly concerned about privacy, protecting partici... 详细信息
来源: 评论
Horizontal Federated Traffic Speed Prediction Base on Secure Node Attribute Aggregation  17th
Horizontal Federated Traffic Speed Prediction Base on Secur...
收藏 引用
17th CCF Conference on Computer Supported Cooperative Work and Social computing, ChineseCSCW 2022
作者: Ye, Enjie Guo, Kun Guo, Wenzhong Chen, Dangrun Zhang, Zihan Li, Fuan Zheng, JiaChen Fujian Provincial Key Laboratory of Network Computing and Intelligent Information Processing Fuzhou University Fuzhou350108 China College of Computer and Data Science/College of Software Fuzhou University Fuzhou350108 China Key Laboratory of Spatial Data Mining and Information Sharing Ministry of Education Fuzhou350108 China
Federated graph learning has been widely used in distributed graph machine learning tasks. The data distribution of existing graph-based federated Spatio-temporal prediction methods is mainly segmented by graph topolo... 详细信息
来源: 评论