咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 34 篇 会议
  • 1 册 图书

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 54 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 22 篇 生物工程
    • 12 篇 光学工程
    • 12 篇 生物医学工程(可授...
    • 9 篇 信息与通信工程
    • 6 篇 化学工程与技术
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
  • 55 篇 理学
    • 25 篇 物理学
    • 23 篇 生物学
    • 18 篇 数学
    • 13 篇 化学
    • 12 篇 统计学(可授理学、...
    • 2 篇 地质学
  • 20 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 18 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 教育学

主题

  • 8 篇 machine learning
  • 5 篇 deep neural netw...
  • 4 篇 deep learning
  • 3 篇 predictive model...
  • 3 篇 decision making
  • 3 篇 molecular dynami...
  • 2 篇 reinforcement le...
  • 2 篇 electroencephalo...
  • 2 篇 speech enhanceme...
  • 2 篇 data mining
  • 2 篇 noise
  • 2 篇 computational li...
  • 2 篇 computational mo...
  • 2 篇 hearing aids
  • 2 篇 kernel
  • 2 篇 artificial intel...
  • 2 篇 radiotherapy
  • 2 篇 classification (...
  • 2 篇 pattern analysis
  • 2 篇 optical characte...

机构

  • 12 篇 google research ...
  • 11 篇 machine learning...
  • 8 篇 machine learning...
  • 7 篇 digital philolog...
  • 7 篇 max planck insti...
  • 6 篇 department of ar...
  • 5 篇 faculty of philo...
  • 5 篇 bifold – berlin ...
  • 4 篇 research group d...
  • 4 篇 bifold berlin in...
  • 4 篇 research group d...
  • 4 篇 department of ar...
  • 3 篇 institute of pat...
  • 3 篇 max planck insti...
  • 3 篇 technische unive...
  • 3 篇 university of vi...
  • 3 篇 mdsi – munich da...
  • 3 篇 berlin institute...
  • 3 篇 univie doctoral ...
  • 3 篇 aignostics gmbh

作者

  • 17 篇 müller klaus-rob...
  • 12 篇 roth benjamin
  • 5 篇 unke oliver t.
  • 5 篇 märz luisa
  • 5 篇 ullah ihsan
  • 5 篇 gastegger michae...
  • 5 篇 chmiela stefan
  • 4 篇 çano erion
  • 4 篇 klaus-robert mül...
  • 4 篇 triantafyllopoul...
  • 4 篇 schuller björn w...
  • 4 篇 sauceda huziel e...
  • 3 篇 tsangko iosif
  • 3 篇 tschiatschek seb...
  • 3 篇 schmude timothée
  • 3 篇 schweter stefan
  • 3 篇 kaschesky michae...
  • 3 篇 stephan andreas
  • 3 篇 klauschen freder...
  • 3 篇 koesten laura

语言

  • 120 篇 英文
  • 7 篇 其他
检索条件"机构=Data Mining and Machine Learning Research Group"
127 条 记 录,以下是1-10 订阅
排序:
Intelligent Assistant for Multivariant Analysis  26
Intelligent Assistant for Multivariant Analysis
收藏 引用
26th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2024
作者: Angerri, Xavier Delgado, Oscar Gibert, Karina Knowledge Engineering and Machine Learning Group Intelligent Data Science and Artificial Intelligence Research Center Universtitat Politècnica de Catalunya Spain
When a Knowledge Discovery from data (KDD) (Fayyad, Piatetsky-Shapiro, & Smyth, 1996) process is being applied to get knowledge, several methods could be used (Gibert, et al., 2018). A simple and fast way to obtai... 详细信息
来源: 评论
From Clustering to Intelligent Decision Support System: An Application to 3D Printing  26
From Clustering to Intelligent Decision Support System: An A...
收藏 引用
26th International Conference of the Catalan Association for Artificial Intelligence, CCIA 2024
作者: Karna, Ashutosh Gibert, Karina Knowledge Engineering and Machine Learning Group Intelligent Data Science and Artificial Intelligence Research Centre Universitat Politècnica de Catalunya Barcelona Spain
This study focuses on developing an intelligent decision support system (IDSS) that helps a human operator make data-driven decisions. To put IDSS in production, it is necessary to develop two additional components: o... 详细信息
来源: 评论
Correction to: Code is law: how COMPAS affects the way the judiciary handles the risk of recidivism (Artificial Intelligence and Law, (2024), 10.1007/s10506-024-09389-8)
收藏 引用
Artificial Intelligence and Law 2024年 1-2页
作者: Engel, Christopher Linhardt, Lorenz Schubert, Marcel Max-Planck-Institute for Research on Collective Goods Bonn53113 Germany Machine Learning Group Technische Universität Berlin Berlin10623 Germany Berlin Institute for the Foundations of Learning and Data – BIFOLD Berlin10586 Germany Max-Planck-Institute for Research on Collective Goods Bonn Germany
In the original version of the article the funding information and author affiliation was incorrect for Lorenz Linhardt. The corrected information is shown below. Author affiliation: machine learning group, Technische...
来源: 评论
Batch Layer Normalization A new normalization layer for CNNs and RNNs  22
Batch Layer Normalization A new normalization layer for CNNs...
收藏 引用
Proceedings of the 6th International Conference on Advances in Artificial Intelligence
作者: Amir Ziaee Erion ÇAno Design Computing Group TU Wien Austria Research Group Data Mining and Machine Learning University of Vienna Austria
This study introduces a new normalization layer termed Batch Layer Normalization (BLN) to reduce the problem of internal covariate shift in deep neural network layers. As a combined version of batch and layer normaliz... 详细信息
来源: 评论
Pattern Discovery in an EEG database of Depression Patients: Preliminary Results  14
Pattern Discovery in an EEG Database of Depression Patients:...
收藏 引用
14th International Conference on Measurement, MEASUREMENT 2023
作者: Hlavackova-Schindler, Katerina Pacher, Christina Plant, Claudia Lazarenko, Mykola Palus, Milan Hlinka, Jaroslav Kathpalia, Aditi Brunovsky, Martin University of Vienna Data Mining and Machine Learning Research Group Faculty of Computer Science Vienna Austria Czech Academy of Sciences Institute of Computer Science Department of Complex Systems Prague Czech Republic National Institute of Mental Health Clinical Research Programme Klecany Czech Republic
The ability to predict response to medication treatment of depressed patients, either early in the course of therapy or before treatment even begins can avoid trials of ineffective therapy and save patients from prolo... 详细信息
来源: 评论
Motif Discovery Framework for Psychiatric EEG data Classification
arXiv
收藏 引用
arXiv 2025年
作者: Kraljevska, Melanija Hlavackova-Schindler, Katerina Miklautz, Lukas Plant, Claudia Research Group Data Mining and Machine Learning Faculty of Computer Science University of Vienna Währingerstrasse 29 Vienna1090 Austria ds:UniVie University of Vienna Austria
In current medical practice, patients undergoing depression treatment must wait four to six weeks before a clinician can assess medication response due to the delayed noticeable effects of antidepressants. Identificat... 详细信息
来源: 评论
Topic Segmentation of research Article Collections
arXiv
收藏 引用
arXiv 2022年
作者: Çano, Erion Roth, Benjamin Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria
Collections of research article data harvested from the web have become common recently since they are important resources for experimenting on tasks such as named entity recognition, text summarization, or keyword ge... 详细信息
来源: 评论
Is the Computation of Abstract Sameness Relations Human-Like in Neural Language Models?
arXiv
收藏 引用
arXiv 2022年
作者: Thoma, Lukas Roth, Benjamin Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria
In recent years, deep neural language models have made strong progress in various NLP tasks. This work explores one facet of the question whether state-of-the-art NLP models exhibit elementary mechanisms known from hu... 详细信息
来源: 评论
SepLL: Separating Latent Class Labels from Weak Supervision Noise
SepLL: Separating Latent Class Labels from Weak Supervision ...
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Stephan, Andreas Kougia, Vasiliki Roth, Benjamin Research Group Data Mining and Machine Learning Faculty of Computer Science University of Vienna Vienna Austria UniVie Doctoral School Computer Science Vienna Austria Faculty of Philological and Cultural Studies University of Vienna Vienna Austria
In the weakly supervised learning paradigm, labeling functions automatically assign heuristic, often noisy, labels to data samples. In this work, we provide a method for learning from weak labels by separating two typ... 详细信息
来源: 评论
hmBERT: Historical Multilingual Language Models for Named Entity Recognition
hmBERT: Historical Multilingual Language Models for Named En...
收藏 引用
2022 Conference and Labs of the Evaluation Forum, CLEF 2022
作者: Schweter, Stefan März, Luisa Schmid, Katharina Çano, Erion Bayerische Staatsbibliothek München Digital Library/ Munich Digitization Center Munich Germany Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria Natural Language Processing Expert Center Data:Lab Volkswagen AG Munich Germany
Compared to standard Named Entity Recognition (NER), identifying persons, locations, and organizations in historical texts constitutes a big challenge. To obtain machine-readable corpora, the historical text is usuall... 详细信息
来源: 评论