咨询与建议

限定检索结果

文献类型

  • 92 篇 期刊文献
  • 34 篇 会议
  • 1 册 图书

馆藏范围

  • 127 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 80 篇 工学
    • 54 篇 计算机科学与技术...
    • 39 篇 软件工程
    • 22 篇 生物工程
    • 12 篇 光学工程
    • 12 篇 生物医学工程(可授...
    • 9 篇 信息与通信工程
    • 6 篇 化学工程与技术
    • 5 篇 电气工程
    • 5 篇 电子科学与技术(可...
    • 5 篇 安全科学与工程
    • 3 篇 控制科学与工程
    • 2 篇 力学(可授工学、理...
    • 2 篇 机械工程
    • 2 篇 仪器科学与技术
    • 2 篇 动力工程及工程热...
  • 55 篇 理学
    • 25 篇 物理学
    • 23 篇 生物学
    • 18 篇 数学
    • 13 篇 化学
    • 12 篇 统计学(可授理学、...
    • 2 篇 地质学
  • 20 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 9 篇 工商管理
    • 8 篇 图书情报与档案管...
  • 18 篇 医学
    • 16 篇 临床医学
    • 11 篇 基础医学(可授医学...
    • 6 篇 公共卫生与预防医...
    • 6 篇 药学(可授医学、理...
  • 6 篇 经济学
    • 6 篇 应用经济学
  • 4 篇 法学
    • 4 篇 社会学
  • 1 篇 教育学

主题

  • 8 篇 machine learning
  • 5 篇 deep neural netw...
  • 4 篇 deep learning
  • 3 篇 predictive model...
  • 3 篇 decision making
  • 3 篇 molecular dynami...
  • 2 篇 reinforcement le...
  • 2 篇 electroencephalo...
  • 2 篇 speech enhanceme...
  • 2 篇 data mining
  • 2 篇 noise
  • 2 篇 computational li...
  • 2 篇 computational mo...
  • 2 篇 hearing aids
  • 2 篇 kernel
  • 2 篇 artificial intel...
  • 2 篇 radiotherapy
  • 2 篇 classification (...
  • 2 篇 pattern analysis
  • 2 篇 optical characte...

机构

  • 12 篇 google research ...
  • 11 篇 machine learning...
  • 8 篇 machine learning...
  • 7 篇 digital philolog...
  • 7 篇 max planck insti...
  • 6 篇 department of ar...
  • 5 篇 faculty of philo...
  • 5 篇 bifold – berlin ...
  • 4 篇 research group d...
  • 4 篇 bifold berlin in...
  • 4 篇 research group d...
  • 4 篇 department of ar...
  • 3 篇 institute of pat...
  • 3 篇 max planck insti...
  • 3 篇 technische unive...
  • 3 篇 university of vi...
  • 3 篇 mdsi – munich da...
  • 3 篇 berlin institute...
  • 3 篇 univie doctoral ...
  • 3 篇 aignostics gmbh

作者

  • 17 篇 müller klaus-rob...
  • 12 篇 roth benjamin
  • 5 篇 unke oliver t.
  • 5 篇 märz luisa
  • 5 篇 ullah ihsan
  • 5 篇 gastegger michae...
  • 5 篇 chmiela stefan
  • 4 篇 çano erion
  • 4 篇 klaus-robert mül...
  • 4 篇 triantafyllopoul...
  • 4 篇 schuller björn w...
  • 4 篇 sauceda huziel e...
  • 3 篇 tsangko iosif
  • 3 篇 tschiatschek seb...
  • 3 篇 schmude timothée
  • 3 篇 schweter stefan
  • 3 篇 kaschesky michae...
  • 3 篇 stephan andreas
  • 3 篇 klauschen freder...
  • 3 篇 koesten laura

语言

  • 120 篇 英文
  • 7 篇 其他
检索条件"机构=Data Mining and Machine Learning Research Group"
127 条 记 录,以下是21-30 订阅
排序:
Focused contrastive training for test-based constituency analysis
arXiv
收藏 引用
arXiv 2021年
作者: Roth, Benjamin Çano, Erion Digital Philology Research Group Data Mining and Machine Learning University of Vienna Austria
We propose a scheme for self-training of grammaticality models for constituency analysis based on linguistic tests. A pre-trained language model is fine-tuned by contrastive estimation of grammatical sentences from a ... 详细信息
来源: 评论
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Aids
DFingerNet: Noise-Adaptive Speech Enhancement for Hearing Ai...
收藏 引用
2025 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2025
作者: Tsangko, Iosif Triantafyllopoulos, Andreas Müller, Michael Schröter, Hendrik Schuller, Björn W. EIHW - Embedded Intelligence for Health Care and Wellbeing University of Augsburg Germany Technical University of Munich Germany MCML - Munich Center for Machine Learning Munich Germany WS Audiology Research and Development Erlangen Germany GLAM - Group on Language Audio & Music Imperial College London United Kingdom MDSI - Munich Data Science Institute Munich Germany
The DeepFilterNet (DFN) architecture was recently proposed as a deep learning model suited for hearing aid devices. Despite its competitive performance on numerous benchmarks, it still follows a 'one-size-fits-all... 详细信息
来源: 评论
Design and Implementation of a data Governance Framework and Platform: A Case Study of a National research Organization of Thailand  20
Design and Implementation of a Data Governance Framework and...
收藏 引用
20th International Joint Conference on Computer Science and Software Engineering, JCSSE 2023
作者: Chanyachatchawan, Sapa Nasingkun, Krich Tumsangthong, Patipat Chata, Porntiwa Buranarach, Marut Socharoentum, Monsak National Electronics and Computer Technology Center Leveraging Technology Solutions Section Bangkok Thailand National Electronics and Computer Technology Center Strategic Analytics Networks with Machine Learning and Ai Research Bangkok Thailand National Electronics and Computer Technology Center Data Science and Analytics Research Group Bangkok Thailand Digital Government Development Agency Bangkok Thailand
In the current era of extensive data usage across industries, data collection, preservation, utilization, and organization has become more challenging and nuanced because it is necessary to consider critical concerns ... 详细信息
来源: 评论
Pattern Discovery in an EEG database of Depression Patients: Preliminary Results
Pattern Discovery in an EEG Database of Depression Patients:...
收藏 引用
International Conference on Measurement
作者: Kateřina Hlaváčková-Schindler Christina Pacher Claudia Plant Mykola Lazarenko Milan Paluš Jaroslav Hlinka Aditi Kathpalia Martin Brunovský Data Mining and Machine Learning Research Group Faculty of Computer Science University of Vienna Vienna Austria Department of Complex Systems Institute of Computer Science Czech Academy of Sciences Prague Czechia Clinical Research Programme National Institute of Mental Health Klecany Czechia
The ability to predict response to medication treatment of depressed patients, either early in the course of therapy or before treatment even begins can avoid trials of ineffective therapy and save patients from prolo...
来源: 评论
ReInform: Selecting paths with reinforcement learning for contextualized link prediction
arXiv
收藏 引用
arXiv 2022年
作者: Speranskaya, Marina Methias, Sameh Roth, Benjamin Center for Information and Language Processing LMU Munich Germany Technical University of Munich Munich Germany Research Group Data Mining and Machine Learning University of Vienna Vienna Austria
We propose to use reinforcement learning to inform transformer-based contextualized link prediction models by providing paths that are most useful for predicting the correct answer. This is in contrast to previous app... 详细信息
来源: 评论
xMIL: Insightful Explanations for Multiple Instance learning in Histopathology  38
xMIL: Insightful Explanations for Multiple Instance Learning...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hense, Julius Idaji, Mina Jamshidi Eberle, Oliver Schnake, Thomas Dippel, Jonas Ciernik, Laure Buchstab, Oliver Mock, Andreas Klauschen, Frederick Müller, Klaus-Robert Berlin Institute for the Foundations of Learning and Data Berlin Germany Machine Learning Group Technische Universität Berlin Berlin Germany Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany German Cancer Research Center Heidelberg Germany German Cancer Consortium Munich Germany Institute of Pathology Charité Universitätsmedizin Berlin Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker...
来源: 评论
xMIL: insightful explanations for multiple instance learning in histopathology  24
xMIL: insightful explanations for multiple instance learning...
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Julius Hense Mina Jamshidi Idaji Oliver Eberle Thomas Schnake Jonas Dippel Laure Ciernik Oliver Buchstab Andreas Mock Frederick Klauschen Klaus-Robert Müller Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany and Aignostics GmbH Berlin Germany Institute of Pathology Ludwig Maximilian University Munich Germany Institute of Pathology Ludwig Maximilian University Munich Germany and German Cancer Research Center Heidelberg and German Cancer Consortium Munich Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany and Institute of Pathology Ludwig Maximilian University Munich Germany and German Cancer Research Center Heidelberg and German Cancer Consortium Munich Germany and Institute of Pathology Charité Universitätsmedizin Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany and Machine Learning Group Technische Universität Berlin Berlin Germany and Department of Artificial Intelligence Korea University Seoul Korea and Max-Planck Institute for Informatics Saarbrücken Germany
Multiple instance learning (MIL) is an effective and widely used approach for weakly supervised machine learning. In histopathology, MIL models have achieved remarkable success in tasks like tumor detection, biomarker...
来源: 评论
Nonequilibrium Universality of Rydberg-Excitation Spreading on a Dynamic Network
arXiv
收藏 引用
arXiv 2025年
作者: Ohler, Simon Brady, Daniel Mischke, Patrick Bender, Jana Ott, Herwig Niederprüm, Thomas Ripken, Winfried Otterbach, Johannes S. Fleischhauer, Michael Department of Physics Research Center OPTIMAS RPTU Kaiserslautern Kaiserslautern67663 Germany Mainz55128 Germany Machine Learning Group Technische Universität Berlin Berlin10587 Germany Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Orthogonal Otter UG Berlin10961 Germany
Understanding the universal properties of non-equilibrium phase transitions of spreading processes is a challenging problem. This applies in particular to irregular and dynamically varying networks. We here investigat... 详细信息
来源: 评论
The Conditional Cauchy-Schwarz Divergence With Applications to Time-Series data and Sequential Decision Making
收藏 引用
IEEE Transactions on Pattern Analysis and machine Intelligence 2025年 第7期47卷 5901-5917页
作者: Shujian Yu Hongming Li Sigurd Løkse Robert Jenssen José C. Príncipe Machine Learning Group UiT - The Arctic University of Norway Tromsø Norway Quantitative Data Analytics Group Vrije Universiteit Amsterdam Amsterdam The Netherlands Department of Electrical and Computer Engineering University of Florida Gainesville FL USA Drones and Autonomous Systems Group NORCE Norwegian Research Centre Tromsø Norway Pioneer AI Centre Copenhagen University København Denmark Norwegian Computing Center Oslo Norway
The Cauchy-Schwarz (CS) divergence was developed by Príncipe et al. in 2000. In this paper, we extend the classic CS divergence to quantify the closeness between two conditional distributions and show that the de... 详细信息
来源: 评论
So3krates: equivariant attention for interactions on arbitrary length-scales in molecular systems  22
So3krates: equivariant attention for interactions on arbitra...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: J. Thorben Frank Oliver T. Unke Klaus-Robert Müller Machine Learning Group TU Berlin Berlin Germany and BIFOLD Berlin Institute for the Foundations of Learning and Data Germany Machine Learning Group TU Berlin Berlin Germany and BIFOLD Berlin Institute for the Foundations of Learning and Data Germany and Google Research Brain team Berlin Machine Learning Group TU Berlin Berlin Germany and BIFOLD Berlin Institute for the Foundations of Learning and Data Germany and Google Research Brain team Berlin and Department of Artificial Intelligence Korea University Seoul Korea and Max Planck Institut für Informatik Saarbrücken Germany
The application of machine learning methods in quantum chemistry has enabled the study of numerous chemical phenomena, which are computationally intractable with traditional ab-initio methods. However, some quantum me...
来源: 评论