咨询与建议

限定检索结果

文献类型

  • 750 篇 期刊文献
  • 722 篇 会议
  • 8 册 图书

馆藏范围

  • 1,480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 973 篇 工学
    • 753 篇 计算机科学与技术...
    • 625 篇 软件工程
    • 181 篇 信息与通信工程
    • 179 篇 生物工程
    • 109 篇 控制科学与工程
    • 89 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 60 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 49 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
  • 534 篇 理学
    • 281 篇 数学
    • 197 篇 生物学
    • 106 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 51 篇 化学
    • 42 篇 系统科学
  • 264 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 135 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 62 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 16 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 54 篇 semantics
  • 43 篇 training
  • 39 篇 deep learning
  • 32 篇 deep neural netw...
  • 31 篇 computational mo...
  • 29 篇 feature extracti...
  • 29 篇 machine learning
  • 25 篇 big data
  • 24 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 21 篇 neural networks
  • 20 篇 contrastive lear...
  • 17 篇 object detection
  • 16 篇 convolution
  • 15 篇 memory managemen...
  • 15 篇 recommender syst...
  • 15 篇 optimization

机构

  • 103 篇 national enginee...
  • 55 篇 school of comput...
  • 53 篇 school of cyber ...
  • 52 篇 shenzhen researc...
  • 39 篇 zhejiang lab
  • 37 篇 national enginee...
  • 36 篇 big data researc...
  • 33 篇 hubei engineerin...
  • 32 篇 services computi...
  • 31 篇 huazhong univers...
  • 29 篇 tencent ai lab
  • 29 篇 cluster and grid...
  • 29 篇 school of data s...
  • 28 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 national univers...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 21 篇 school of softwa...
  • 20 篇 university of sc...

作者

  • 137 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 30 篇 liao xiaofei
  • 28 篇 liu jun
  • 26 篇 chen enhong
  • 25 篇 wu baoyuan
  • 25 篇 hu shengshan
  • 23 篇 liu qi
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 li haizhou
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 17 篇 zhang leo yu
  • 16 篇 wang shuai
  • 16 篇 yu zhang

语言

  • 1,353 篇 英文
  • 118 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1480 条 记 录,以下是1101-1110 订阅
排序:
Meta Mask Correction for Nuclei Segmentation in Histopathological Image
Meta Mask Correction for Nuclei Segmentation in Histopatholo...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Jiangbo Shi Chang Jia Zeyu Gao Tieliang Gong Chunbao Wang Chen Li National Engineering Lab for Big Data Analytics Xi’an Jiao tong University Xi’an Shaanxi China School of Computer Science and Technology Xi’an Jiao tong University Xi’an Shaanxi China Shaanxi Province Key Laboratory of Satellite and Terrestrial Network Tech.R&D Xi’an Jiao tong University Xi’an Shaanxi China the First Affiliated Hospital of Xi’an Jiaotong University Xi’an Shaanxi China
Nuclei segmentation is a fundamental task in digital pathology analysis and can be automated by deep learning-based methods. However, the development of such an automated method requires a large amount of data with pr... 详细信息
来源: 评论
Is heuristic sampling necessary in training deep object detectors?
arXiv
收藏 引用
arXiv 2019年
作者: Chen, Joya Liu, Dong Xu, Tong Wu, Shiwei Cheng, Yifei Chen, Enhong Anhui Province Key Lab of Big Data Analysis and Application University of Science and Technology of China School of Computer Science and Technology School of Data Science Department of Electronic Engineering and Information Science University of Science and Technology of China
To train accurate deep object detectors under the extreme foreground-background imbalance, heuristic sampling methods are always necessary, which either re-sample a subset of all training samples (hard sampling method... 详细信息
来源: 评论
Learning pattern of hurricane damage levels using semantic web resources
Learning pattern of hurricane damage levels using semantic w...
收藏 引用
作者: Tran, Quang-Khai Song, Sa-Kwang Department of Big Data Science University of Science and Technology Korea Republic of Decision Support Technology Research Lab Disaster Management HPC Technology Research Center Convergence Technology Research Division Korea Institute of Science and Technology Information 245 Daehak-ro Yuseong-gu Daejeon34141 Korea Republic of
This paper proposes an approach for hurricane damage level prediction using semantic web resources and matrix completion algorithms. Based on the statistical unit node set framework, streaming data from five hurricane... 详细信息
来源: 评论
Space technology:A powerful tool for safeguarding world heritage
收藏 引用
The Innovation 2023年 第3期4卷 27-28页
作者: Lei Luo Jie Liu Francesca Cigna Damian Evans Mario Hernandez Deodato Tapete Peter Shadie Athos Agapiou Abdelaziz Elfadaly Min Chen Lanwei Zhu Bihong Fu Ruixia Yang Shahina Tariq Mohamed Ouessar Rosa Lasaponara Xinyuan Wang Huadong Guo International Research Center of Big Data for Sustainable Development Goals(CBAS) Beijing 100094China Key Laboratory of Digital Earth Science Aerospace Information Research Institute(AIR)Chinese Academy of Sciences(CAS)Beijing 100094China International Centre on Space Technologies for Natural and Cultural Heritage(HIST)Under the Auspices of UNESCO Beijing 100094China Institute of Atmospheric Sciences and Climate(ISAC) National Research Council(CNR)00133 RomeItaly École Française d’Extreme-Orient 22 Avenue du Président Wilson75116 ParisFrance International Society for Digital Earth(ISDE) Mexico CityMexico Italian Space Agency(ASI) 00133 RomeItaly Blue Mountains World Heritage Institute 16 Dunmore LaneKatoombaNSW 2780Australia Earth Observation Cultural Heritage Research Lab Department of Civil Engineering and GeomaticsCyprus University of TechnologyPO Box 503296 Limassol 3036Cyprus National Authority for Remote Sensing and Space Sciences Cairo 1564Egypt Key Laboratory of Virtual Geographic Environment Ministry of Education of PRCNanjing Normal UniversityNanjing 210023China COMSATS University Islamabad(CUI) Islamabad 45550Pakistan Institut des Regions Arides(IRA)-Medenine Medenine 4119Tunisia Institute of Methodologies for Environmental Analysis(IMAA) CNRC.da Santa LojaTito Scalo85050 PotenzaItaly
WORLD HERITAGE AND SPACE TECHNOLOGY The Convention Concerning the Protection of the World Cultural and Natural Heritage(WHC),adopted by United Nations Educational,Scientific and Cultural Organization(UNESCO)on Novembe... 详细信息
来源: 评论
Boundary stabilization and disturbance rejection for a time fractional order diffusion-wave equation ⁎
收藏 引用
IFAC-PapersOnLine 2020年 第2期53卷 3695-3700页
作者: Hua-Cheng Zhou Ze-Hao Wu Bao-Zhu Guo Yangquan Chen School of Mathematics and Statistics Central South University Changsha 410075 PR China School of Mathematics and Big Data Foshan University Foshan 528000 PR China Academy of Mathematics and Systems Science Academia Sinica Beijing 100190 China Mechatronics Embedded Systems and Automation Lab University of California Merced 95343 CA USA
In this paper, we study the boundary stabilization and disturbance rejection for an unstable time fractional diffusion-wave equation involving Caputo time fractional derivative. When there is no boundary external dist... 详细信息
来源: 评论
StyleNAS: An empirical study of neural architecture search to uncover surprisingly fast end-to-end universal style transfer networks
arXiv
收藏 引用
arXiv 2019年
作者: An, Jie Xiong, Haoyi Ma, Jinwen Luo, Jiebo Huan, Jun School of Mathematical Sciences Peking University Big Data Lab Baidu Research Department of Computer Science University of Rochester
Neural Architecture Search (NAS) has been widely studied for designing discriminative deep learning models such as image classification, object detection, and semantic segmentation. As a large number of prior work hav... 详细信息
来源: 评论
Preliminary prediction of the basic reproduction number of the Wuhan novel coronavirus 2019-nCoV
arXiv
收藏 引用
arXiv 2020年
作者: Zhou, Tao Liu, Quanhui Yang, Zimo Liao, Jingyi Yang, Kexin Bai, Wei Lu, Xin Zhang, Wei Big Data Research Center University of Electronic Science and Technology of China Chengdu611731 China College of Computer Science Sichuan University Chengdu610065 China Beijing AiQiYi Science & Technology Co. Ltd. Beijing100080 China Shenzhen International Graduate School Tsinghua University Shenzhen518055 China CompleX Lab University of Electronic Science and Technology of China Chengdu611731 China College of Systems Engineering National University of Defense Technology Changsha410073 China West China Biomedical Big Data Center West China Hospital Sichuan University Chengdu610047 China
Objectives: To estimate the basic reproduction number of the Wuhan novel coronavirus (2019-nCoV). Methods: Based on the susceptible-exposed-infected-removed (SEIR) compartment model and the assumption that the infecti... 详细信息
来源: 评论
Minimum Spanning Tree Clustering Based on Density Filtering  7th
Minimum Spanning Tree Clustering Based on Density Filtering
收藏 引用
7th CCF Academic Conference on bigdata, CCF bigdata 2019
作者: Wang, Ke Xie, Xia Sun, Jiayu Cao, Wenzhi National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China Hunan University of Technology and Business Changsha410205 China
Clustering analysis is an important method in data mining. In order to recognize clusters with arbitrary shapes as well as clusters with different density, we propose a new clustering approach: minimum spanning tree c... 详细信息
来源: 评论
Early anomaly detection in wind turbine bolts breaking problem-Methodology and application  3
Early anomaly detection in wind turbine bolts breaking probl...
收藏 引用
3rd IEEE International Conference on big data Analysis, ICBDA 2018
作者: Wu, Chung-Wei Chen, Mei Big Data Science Lab Neucloud Technology Co. Beijing Ltd. Beijing China
Early anomaly detection plays an important role in many fields, such as fraud detection in financial data, a signal indicating machine unhealthy status, etc. It leads to fault diagnostics and even prognostics accordin... 详细信息
来源: 评论
Triplet Deep Subspace Clustering via Self-Supervised data Augmentation
Triplet Deep Subspace Clustering via Self-Supervised Data Au...
收藏 引用
IEEE International Conference on data Mining (ICDM)
作者: Zhao Zhang Xianzhen Li Haijun Zhang Yi Yang Shuicheng Yan Meng Wang School of Computer Science and Information Engineering Hefei University of Technology Hefei China Key Laboratory of Knowledge Engineering with Big Data (Ministry of Education) & Intelligent Interconnected Systems Laboratory of Anhui Province Hefei University of Technology Hefei China School of Computer Science and Technology Soochow University Suzhou China Harbin Institute of Technology (Shenzhen) Shenzhen China Centre for Artificial Intelligence University of Technology Sydney Sydney NSW Australia Sea AI Lab (SAIL) & National University of Singapore Singapore
Deep subspace clustering (DSC) with the auto-encoder and self-expression layer is of great concern due to encouraging performance. However, existing methods usually adopt a “single-task” strategy based on a single d... 详细信息
来源: 评论