咨询与建议

限定检索结果

文献类型

  • 745 篇 期刊文献
  • 702 篇 会议
  • 8 册 图书

馆藏范围

  • 1,455 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 950 篇 工学
    • 733 篇 计算机科学与技术...
    • 620 篇 软件工程
    • 180 篇 信息与通信工程
    • 179 篇 生物工程
    • 92 篇 控制科学与工程
    • 87 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 59 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 48 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
    • 20 篇 建筑学
  • 530 篇 理学
    • 280 篇 数学
    • 195 篇 生物学
    • 105 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 50 篇 化学
    • 42 篇 系统科学
  • 263 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 134 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 72 篇 医学
    • 62 篇 临床医学
    • 52 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 19 篇 经济学
  • 15 篇 农学
  • 9 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 53 篇 semantics
  • 42 篇 training
  • 38 篇 deep learning
  • 31 篇 deep neural netw...
  • 30 篇 computational mo...
  • 29 篇 feature extracti...
  • 28 篇 machine learning
  • 25 篇 big data
  • 23 篇 graph neural net...
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 22 篇 data models
  • 21 篇 neural networks
  • 18 篇 contrastive lear...
  • 17 篇 object detection
  • 15 篇 memory managemen...
  • 15 篇 convolution
  • 14 篇 recommender syst...
  • 14 篇 optimization

机构

  • 100 篇 national enginee...
  • 53 篇 school of comput...
  • 51 篇 shenzhen researc...
  • 50 篇 school of cyber ...
  • 39 篇 zhejiang lab
  • 36 篇 big data researc...
  • 34 篇 national enginee...
  • 31 篇 huazhong univers...
  • 31 篇 hubei engineerin...
  • 29 篇 services computi...
  • 29 篇 school of data s...
  • 28 篇 tencent ai lab
  • 27 篇 cluster and grid...
  • 26 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 22 篇 national univers...
  • 20 篇 data science and...
  • 19 篇 university of sc...

作者

  • 134 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 29 篇 liao xiaofei
  • 25 篇 wu baoyuan
  • 25 篇 liu jun
  • 25 篇 chen enhong
  • 23 篇 liu qi
  • 23 篇 hu shengshan
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 19 篇 li haizhou
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 16 篇 wang shuai
  • 16 篇 zhang leo yu
  • 16 篇 yu zhang

语言

  • 1,381 篇 英文
  • 65 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1455 条 记 录,以下是1341-1350 订阅
排序:
Connecting emerging relationships from news via tensor factorization
Connecting emerging relationships from news via tensor facto...
收藏 引用
IEEE International Conference on big data
作者: Jingyuan Zhang Chun-Ta Lu Bokai Cao Yi Chang Philip S. Yu Baidu Research Big Data Lab (BDL) Sunnyvale CA USA Department of Computer Science University of Illinois at Chicago IL USA Huawei Research America Santa Clara CA USA
Knowledge graphs (KGs) have been widely used to represent relationships among entities, while KGs cannot capture new relationships between entities emerging along time. Since news often provides the latest information... 详细信息
来源: 评论
Creating Knowledge and Wisdom via big data Analytics: Preface for ITQM 2017
收藏 引用
Procedia Computer science 2017年 122卷 1-9页
作者: Ahuja, Vandana Shi, Yong Khazanchi, Deepak Abidi, Naseem Tian, Yingjie Berg, Daniel Tien, James M. Jaypee Business School A-10 Sector-62 Noida Uttar Pradesh201 307 India School of Economics and Management University of Chinese Academy of Sciences Key Lab of Big Data Mining and Knowledge Management Chinese Academy of Sciences Beijing100190 China College of Information Science and Technology University of Nebraska at Omaha Chinese Academy of Sciences OmahaNE68182 United States College of Engineering University of Miami Coral GablesFL33124 United States
来源: 评论
Deep User Modeling for Content-based Event Recommendation in Event-based Social Networks
Deep User Modeling for Content-based Event Recommendation in...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Zhibo Wang Yongquan Zhang Honglong Chen Zhetao Li Feng Xia Jiangsu Key Lab. of Big Data Security & Intelligent Processing NJUPT P. R. China School of Cyber Science and Engineering Wuhan University P. R. China College of Information and Control Engineering China University of Petroleum P. R. China College of Information Engineering Xiangtan University P. R. China School of Software Dalian University of Technology P. R. China
Event-based social networks (EBSNs) are the newly emerging social platforms for users to publish events online and attract others to attend events offline. The content information of events plays an important role in ... 详细信息
来源: 评论
Effect analysis of factors based on neural network in non-contact electrostatic discharge
Effect analysis of factors based on neural network in non-co...
收藏 引用
IEEE International Symposium on Electromagnetic Compatibility (EMC-Beijing)
作者: Huang Jun Ruan Fangming Su Ming Wang Heng Yang Xiangdong David Pommerenke Beijing Oriental Institute of Metrology and Test Beijing China Department of Big Data and Electronic Sciences Guizhou Normal University Guiyang China EMC Lab of Missouri University of Science & Technology US
Discharge parameters in non-contact electrostatic discharge(ESD) are affected by various factors, including electrode moving speed to the target, gas pressure, temperature, humidity. Mechanism of non-contact electrost... 详细信息
来源: 评论
A Margin-based MLE for Crowdsourced Partial Ranking
arXiv
收藏 引用
arXiv 2018年
作者: Xu, Qianqian Xiong, Jiechao Sun, Xinwei Yang, Zhiyong Cao, Xiaochun Huang, Qingming Yao, Yuan Key Lab of Intell. Info. Process. Inst. of Comput. Tech. Cas Beijing100190 Tencent Ai Lab Shenzhen518057 School of Mathematical Sciences Peking University Beijing100871 China DeepWise Ai Lab Beijing100085 Inst. of Info. Engin. Cas Beijing100093 China University of Chinese Academy of Sciences Beijing100049 China Key Lab of Big Data Mining and Knowledge Management Cas Beijing100190 Department of Mathematics Hong Kong University of Science and Technology Hong Kong Hong Kong
A preference order or ranking aggregated from pairwise comparison data is commonly understood as a strict total order. However, in real-world scenarios, some items are intrinsically ambiguous in comparisons, which may... 详细信息
来源: 评论
Running Time Analysis of the (1+1)-EA for OneMax and LeadingOnes under Bit-wise Noise
arXiv
收藏 引用
arXiv 2017年
作者: Qian, Chao Bian, Chao Jiang, Wu Tang, Ke Anhui Province Key Lab of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China Hefei230027 China Shenzhen Key Lab of Computational Intelligence Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen518055 China
In many real-world optimization problems, the objective function evaluation is subject to noise, and we cannot obtain the exact objective value. Evolutionary algorithms (EAs), a type of general-purpose randomized opti... 详细信息
来源: 评论
Evaluating the data visualization for demanding marine operations  16
Evaluating the data visualization for demanding marine opera...
收藏 引用
16th Techno-Ocean, Techno-Ocean 2016
作者: Zhuge, Xu Wang, Hao Strazdins, Girts Big Data Lab Faculty of Engineering and Natural Sciences Norwegian University of Science and Technology Postboks 1517 Aalesund6025 Norway
Complexity and specificity of monitoring sensor data from marine operations brought a majority of challenges of how to evaluate the visualizations of such sensor data. It's urgently needed to develop and implement... 详细信息
来源: 评论
Investigating how well contextual features are captured by bi-directional recurrent neural network models
arXiv
收藏 引用
arXiv 2017年
作者: Chawla, Kushal Sahu, Sunil Kumar Anand, Ashish Adobe Research Big Data Experience Lab BangaloreKarnataka India National Center for Text Mining University of Manchester United Kingdom Department of Computer Science and Engineering IIT GuwahatiAssam India
Learning algorithms for natural language processing (NLP) tasks traditionally rely on manually defined relevant contextual features. On the other hand, neural network models using an only distributional representation... 详细信息
来源: 评论
The Past, Present, and Future of the Brain Imaging data Structure (BIDS)
arXiv
收藏 引用
arXiv 2023年
作者: Poldrack, Russell A. Markiewicz, Christopher J. Appelhoff, Stefan Ashar, Yoni K. Auer, Tibor Baillet, Sylvain Bansal, Shashank Beltrachini, Leandro Bénar, Christian G. Bertazzoli, Giacomo Bhogawar, Suyash Blair, Ross W. Bortoletto, Marta Boudreau, Mathieu Brooks, Teon L. Calhoun, Vince D. Castelli, Filippo Maria Clement, Patricia Cohen, Alexander L. Cohen-Adad, Julien D'Ambrosio, Sasha de Hollander, Gilles de la Iglesia-Vayá, María de la Vega, Alejandro Delorme, Arnaud Devinsky, Orrin Draschkow, Dejan Duff, Eugene Paul DuPre, Elizabeth Earl, Eric Esteban, Oscar Feingold, Franklin W. Flandin, Guillaume Galassi, Anthony Gallitto, Giuseppe Ganz, Melanie Gau, Rémi Gholam, James Ghosh, Satrajit S. Giacomel, Alessio Gillman, Ashley G. Gleeson, Padraig Gramfort, Alexandre Guay, Samuel Guidali, Giacomo Halchenko, Yaroslav O. Handwerker, Daniel A. Hardcastle, Nell Herholz, Peer Hermes, Dora Honey, Christopher J. Innis, Robert B. Ioanas, Horea-Ioan Jahn, Andrew Karakuzu, Agah Keator, David B. Kiar, Gregory Kincses, Balint Laird, Angela R. Lau, Jonathan C. Lazari, Alberto Legarreta, Jon Haitz Li, Adam Li, Xiangrui Love, Bradley C. Lu, Hanzhang Maumet, Camille Mazzamuto, Giacomo Meisler, Steven L. Mikkelsen, Mark Mutsaerts, Henk Nichols, Thomas E. Nikolaidis, Aki Nilsonne, Gustav Niso, Guiomar Norgaard, Martin Okell, Thomas W. Oostenveld, Robert Ort, Eduard Park, Patrick J. Pawlik, Mateusz Pernet, Cyril R. Pestilli, Franco Petr, Jan Phillips, Christophe Poline, Jean-Baptiste Pollonini, Luca Raamana, Pradeep Reddy Ritter, Petra Rizzo, Gaia Robbins, Kay A. Rockhill, Alexander P. Rogers, Christine Rokem, Ariel Rorden, Chris Routier, Alexandre Saborit-Torres, Jose Manuel Salo, Taylor Schirner, Michael Smith, Robert E. Spisak, Tamas Sprenger, Julia Swann, Nicole C. Szinte, Martin Takerkart, Sylvain Thirion, Bertrand Thomas, Adam G. Torabian, Sajjad Varoquaux, Gael Voytek, Bradley Welzel, Julius Wilson, Martin Yarkoni, Tal Gorgolewski, Krzysztof J. Department of Psychology Stanford University StanfordCA United States Max Planck Institute for Human Development Berlin Germany University of Colorado Anschutz Medical Campus AuroraCO United States School of Psychology University of Surrey Guildford United Kingdom McConnell Brain Imaging Centre Montréal Neurological Institute McGill University Montréal Canada Department of Bioengineering University of California San Diego La Jolla CA United States School of Physics Astronomy Cardiff University Wales United Kingdom Institut de Neurosciences des Systèmes Marseille France Neurophysiology Lab IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy Center for Mind/Brain Sciences - CIMeC University of Trento TN Rovereto Italy Brigham and Women’s Hospital BostonMA United States Massachusetts General Hospital BostonMA United States Harvard Medical School BostonMA United States Rackspace Technology San AntonioTX United States NeuroPoly Lab Polytechnique Montréal MontréalQC Canada Georgia State Georgia Tech Emory AtlantaGA United States University of Florence Sesto Fiorentino Italy Bioretics srl Cesena Italy Department of Medical Imaging Ghent University Hospital Ghent Belgium Department of Diagnostic Sciences Ghent University Ghent Belgium Department of Neurology Boston Children's Hospital BostonMA United States Dipartimento di Scienze della Salute dell'Università degli Studi di Milano Milan Italy Department of Clinical and Experimental Epilepsy University College London United Kingdom Zurich Center for Neuroeconomics Department of Economics University of Zurich Zurich Switzerland UMIB-FISABIO Valencia Spain The University of Texas at Austin AustinTX United States SCCN University of California San Diego La Jolla CA United States Department of Neurology NYU Langone Medical Center New YorkNY United States Department of Experimental Psychology University of Oxford Oxford United Kingdom UK Dementia Research Ins
The Brain Imaging data Structure (BIDS) is a community-driven standard for the organization of data and metadata from a growing range of neuroscience modalities. This paper is meant as a history of how the standard ha... 详细信息
来源: 评论
Uniform Information Exchange in Multi-channel Wireless Ad Hoc Networks  17
Uniform Information Exchange in Multi-channel Wireless Ad Ho...
收藏 引用
International Conference on Autonomous Agents and Multiagent Systems
作者: Dongxiao Yu Li Ning Yong Zhang Hai Jin Yuexuan Wang Francis C. M. Lau Shengzhong Feng Services Computing Technology and System Lab Big Data Technology and System Lab Clusters and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Center for High Performance Computing Shenzhen Institutes of Advanced Technology CAS Department of Computer Science The University of Hong Kong
Information exchange is a basic primitive for maintaining the smooth running of a network or a system with multiple communicating agents. Given k packets initially stored at k nodes respectively, the problem is to dis... 详细信息
来源: 评论