咨询与建议

限定检索结果

文献类型

  • 748 篇 期刊文献
  • 702 篇 会议
  • 8 册 图书

馆藏范围

  • 1,458 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 951 篇 工学
    • 734 篇 计算机科学与技术...
    • 621 篇 软件工程
    • 180 篇 信息与通信工程
    • 179 篇 生物工程
    • 92 篇 控制科学与工程
    • 87 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 59 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 48 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
    • 20 篇 建筑学
  • 530 篇 理学
    • 280 篇 数学
    • 195 篇 生物学
    • 105 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 50 篇 化学
    • 42 篇 系统科学
  • 263 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 134 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 73 篇 医学
    • 62 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 19 篇 经济学
  • 15 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 53 篇 semantics
  • 42 篇 training
  • 38 篇 deep learning
  • 31 篇 deep neural netw...
  • 30 篇 computational mo...
  • 29 篇 feature extracti...
  • 28 篇 machine learning
  • 25 篇 big data
  • 23 篇 graph neural net...
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 22 篇 data models
  • 21 篇 neural networks
  • 18 篇 contrastive lear...
  • 17 篇 object detection
  • 15 篇 memory managemen...
  • 15 篇 convolution
  • 14 篇 recommender syst...
  • 14 篇 optimization

机构

  • 100 篇 national enginee...
  • 53 篇 school of comput...
  • 51 篇 shenzhen researc...
  • 50 篇 school of cyber ...
  • 39 篇 zhejiang lab
  • 36 篇 big data researc...
  • 34 篇 national enginee...
  • 31 篇 huazhong univers...
  • 31 篇 hubei engineerin...
  • 29 篇 services computi...
  • 29 篇 school of data s...
  • 28 篇 tencent ai lab
  • 27 篇 cluster and grid...
  • 26 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 22 篇 national univers...
  • 20 篇 data science and...
  • 19 篇 university of sc...

作者

  • 134 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 29 篇 liao xiaofei
  • 25 篇 wu baoyuan
  • 25 篇 liu jun
  • 25 篇 chen enhong
  • 23 篇 liu qi
  • 23 篇 hu shengshan
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 19 篇 li haizhou
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 16 篇 wang shuai
  • 16 篇 zhang leo yu
  • 16 篇 yu zhang

语言

  • 1,384 篇 英文
  • 65 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1458 条 记 录,以下是1381-1390 订阅
排序:
Path ω-automaton
收藏 引用
Journal of Information Hiding and Multimedia Signal Processing 2017年 第3期8卷 640-648页
作者: Jiang, Hua Zou, Fumin Lin, Rongde Li, Lingxiang Key Lab of Granular Computing Minnan Normal University ZhangzhouFujian China Beidou Navigation and Smart Traffic Innovation Center of Fujian Province FuzhouFujian China School of Mathematical Science Huaqiao university QuanzhouFujian China Fujian Provincial Key Laboratory of Big Data Mining and Applications FuzhouFujian China School of Electronics and Information Engineering Hunan University of Science and Engineering YongzhouHunan China
Automata theory is an important branch of theoretical computer science. ω-automaton is an important part of automata theory. The judgment standard for the equivalence of two automata is the equivalence of their accep... 详细信息
来源: 评论
Benchmarking the availability and fault tolerance of Cassandra
Benchmarking the availability and fault tolerance of Cassand...
收藏 引用
7th International Workshop on big data Benchmarking, WBDB 2015
作者: Rosselli, Marten Niemann, Raik Ivanov, Todor Tolle, Karsten Zicari, Roberto V. Frankfurt Big Data Lab Goethe University Frankfurt am Main Frankfurt Germany Accenture Germany Frankfurt Germany Institute of Information Systems University of Applied Science Hof Hof Germany
To be able to handle big data workloads, modern NoSQL database management systems like Cassandra are designed to scale well over multiple machines. However, with each additional machine in a cluster, the likelihood fo... 详细信息
来源: 评论
Genomic basis for RNA alterations in cancer (vol 578, pg 129, 2020)
收藏 引用
NATURE 2023年 第7948期614卷 E37-E37页
作者: Calabrese, Claudia Davidson, Natalie R. Demircioglu, Deniz Fonseca, Nuno A. He, Yao Lehmann, Kjong-Van Liu, Fenglin Shiraishi, Yuichi Soulette, Cameron M. Urban, Lara Greger, Liliana Li, Siliang Liu, Dongbing Perry, Marc D. Xiang, Qian Zhang, Fan Zhang, Junjun Bailey, Peter Erkek, Serap Hoadley, Katherine A. Hou, Yong Huska, Matthew R. Kilpinen, Helena Korbel, Jan O. Marin, Maximillian G. Markowski, Julia Nandi, Tannistha Pan-Hammarstrom, Qiang Pedamallu, Chandra Sekhar Siebert, Reiner Stark, Stefan G. Su, Hong Tan, Patrick Waszak, Sebastian M. Yung, Christina Zhu, Shida Awadalla, Philip Creighton, Chad J. Meyerson, Matthew Ouellette, B. F. Francis Wu, Kui Yang, Huanming Brazma, Alvis Brooks, Angela N. Goke, Jonathan Ratsch, Gunnar Schwarz, Roland F. Stegle, Oliver Zhang, Zemin European Molecular Biology Laboratory European Bioinformatics Institute Hinxton UK European Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI) Cambridge UK Genome Biology Unit European Molecular Biology Laboratory (EMBL) Heidelberg Germany CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources Universidade do Porto Vairão Portugal Berlin Institute for Medical Systems Biology Max Delbruck Center for Molecular Medicine Berlin Germany German Cancer Consortium (DKTK) partner site Berlin Germany German Cancer Research Center (DKFZ) Heidelberg Germany Berlin Institute for Medical Systems Biology Max Delbrück Center for Molecular Medicine Berlin Germany German Cancer Consortium (DKTK) Partner site Berlin Berlin Germany European Molecular Biology Laboratory Genome Biology Unit Heidelberg Germany Division of Computational Genomics and Systems Genetics German Cancer Research Center (DKFZ) Heidelberg Germany ETH Zurich Zurich Switzerland Memorial Sloan Kettering Cancer Center New York NY USA Weill Cornell Medical College New York NY USA SIB Swiss Institute of Bioinformatics Lausanne Switzerland University Hospital Zurich Zurich Switzerland Computational Biology Center Memorial Sloan Kettering Cancer Center New York NY USA Department of Biology ETH Zurich Zürich Switzerland Department of Computer Science ETH Zurich Zurich Switzerland Korea University Seoul South Korea Computational and Systems Biology Program Memorial Sloan Kettering Cancer Center New York NY USA Department of Physiology and Biophysics Weill Cornell Medicine New York NY USA Institute for Computational Biomedicine Weill Cornell Medicine New York NY USA Controlled Department and Institution New York NY USA Englander Institute for Precision Medicine Weill Cornell Medicine New York NY USA National University of Singapore Singapore Singapore Genome Institute of Singapore Singapore Singapore Computational and Systems Biology Genome Institute of Singap
来源: 评论
Application of Graph Theory to Evaluate Chemical Reactions in Cells
收藏 引用
Journal of Physics: Conference Series 2019年 第1期1391卷
作者: Sachiyo Aburatani Yuichi Kokabu Ryota Teshima Teppei Ogawa Michihiro Araki Tomokazu Shiarai Computational Bio Big Data Open Innovation Lab. (CBBD-OIL) National Institute of Advanced Industrial Science and Technology (AIST) AIST Tokyo Waterfront Main Bldg. 2-3-26 Aomi Koto-ku Tokyo 135-0064 Japan Bioscience Department Mitsui Knowledge Industry Co. Ltd. Atago Green Hills MORI Tower 2-5-1 Atago Minato-ku Tokyo 105-6215 Japan Graduate School of Medicine Kyoto University 54 Kawahara-cho Shogoin Sakyo-ku Kyoto 606-8507 Japan Center for Sustainable Resource Science RIKEN 1-7-22 Suehiro-cho Tsurumi-ku Yokohama Kanagawa 230-0045 Japan
Chemical reactions occur in cells for survival and adaptation to various conditions. After these chemical reactions, the reactants and products are often sequentially modified through metabolic pathways. In this study...
来源: 评论
Semantic mapping: Towards contextual and trend analysis of behaviours and practices
Semantic mapping: Towards contextual and trend analysis of b...
收藏 引用
2016 Working Notes of Conference and labs of the Evaluation Forum, CLEF 2016
作者: Murtagh, Fionn Big Data Lab Department of Computer Science and Mathematics University of Derby DerbyDE22 1GB United Kingdom Department of Computing Goldsmiths University of London LondonSW14 6NW United Kingdom
As a platform for unsupervised data mining and pattern recognition, we use Correspondence Analysis on Twitter content from May to December 2015. The following data characteristics are well addressed: exponentially dis... 详细信息
来源: 评论
Overview of the CL-SciSumm 2016 Shared Task
Overview of the CL-SciSumm 2016 Shared Task
收藏 引用
Joint Workshop on Bibliometric-Enhanced Information Retrieval and Natural Language Processing for Digital Libraries, BIRNDL 2016
作者: Jaidka, Kokil Chandrasekaran, Muthu Kumar Rustagi, Sajal Kan, Min-Yen Big Data Experience Lab Adobe Research India India School of Computing National University of Singapore Singapore Singapore Dept. of Computer Science and Engineering Indian Institute of Technology Roorkee India Interactive and Digital Media Institute National University of Singapore Singapore Singapore
The CL-SciSumm 2016 Shared Task is the first medium-scale shared task on scientific document summarization in the computational linguistics (CL) domain. The task built off of the experience and training data set creat... 详细信息
来源: 评论
Piggyback game: Efficient event stream dissemination in Online Social Network systems
Piggyback game: Efficient event stream dissemination in Onli...
收藏 引用
International Conference on Network Protocols
作者: Fan Zhang Hanhua Chen Hai Jin Services Computing Technology and System Lab Big Data Technology and System Lab and Cluster and Grid Computing Lab Huazhong University of Science and Technology Wuhan China
Event stream dissemination dominates the workloads in large-scale Online Social Network (OSN) systems. Based on the de facto per-user view data storage, event stream dissemination raises a large amount of inter-server... 详细信息
来源: 评论
Software Defined Networking Based On-Demand Routing Protocol in Vehicle Ad Hoc Networks
Software Defined Networking Based On-Demand Routing Protocol...
收藏 引用
International Conference on Mobile Ad-hoc and Sensor Networks, MSN
作者: Baihong Dong Weigang Wu Zhiwei Yang Junjie Li School of Data and Computer Science Sun Yat-Sen University Guangdong Key Lab. of Big Data Analysis and Processing Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou
This paper comes up with a SDN based On-Demand Routing Protocol, SVAO, which separates data forwarding layer and network control layer, as in SDN, to enhance the data transmission efficiency within VANETs. The Roadsid... 详细信息
来源: 评论
Robust frequent directions with application in online learning
arXiv
收藏 引用
arXiv 2017年
作者: Luo, Luo Chen, Cheng Zhang, Zhihua Li, Wu-Jun Zhang, Tong Department of Computer Science and Engineering Shanghai Jiao Tong University 800 Dongchuan Road Shanghai200240 China National Engineering Lab for Big Data Analysis and Applications School of Mathematical Sciences Peking University 5 Yiheyuan Road Beijing100871 China National Key Laboratory for Novel Software Technology Collaborative Innovation Center of Novel Software Technology and Industrialization Department of Computer Science and Technology Nanjing University 163 Xianlin Avenue Nanjing210023 China Computer Science & Mathematics Hong Kong University of Science and Technology Hong Kong
The frequent directions (FD) technique is a deterministic approach for online sketching that has many applications in machine learning. The conventional FD is a heuristic procedure that often outputs rank deficient ma... 详细信息
来源: 评论
Analyzing information sharing strategies of users in online social networks
Analyzing information sharing strategies of users in online ...
收藏 引用
2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, ASONAM 2016
作者: Nguyen, Dong-Anh Tan, Shulong Ramanathan, Ram Yan, Xifeng Department of Computer Science University of California Santa BarbaraCA93106 United States Baidu Big Data Lab. 1195 Bordeaux Drive SunnyvaleCA94089 United States Network Research Department Raytheon BBN Technologies 10 Moulton Street CambridgeMA02138 United States
User information sharing is an important behavior in online social networks. Understanding such behavior could help in various applications such as user modeling, information cascade analysis, viral marketing, etc. In... 详细信息
来源: 评论