咨询与建议

限定检索结果

文献类型

  • 750 篇 期刊文献
  • 722 篇 会议
  • 8 册 图书

馆藏范围

  • 1,480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 973 篇 工学
    • 753 篇 计算机科学与技术...
    • 625 篇 软件工程
    • 181 篇 信息与通信工程
    • 179 篇 生物工程
    • 109 篇 控制科学与工程
    • 89 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 60 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 49 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
  • 534 篇 理学
    • 281 篇 数学
    • 197 篇 生物学
    • 106 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 51 篇 化学
    • 42 篇 系统科学
  • 264 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 135 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 62 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 16 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 54 篇 semantics
  • 43 篇 training
  • 39 篇 deep learning
  • 32 篇 deep neural netw...
  • 31 篇 computational mo...
  • 29 篇 feature extracti...
  • 29 篇 machine learning
  • 25 篇 big data
  • 24 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 21 篇 neural networks
  • 20 篇 contrastive lear...
  • 17 篇 object detection
  • 16 篇 convolution
  • 15 篇 memory managemen...
  • 15 篇 recommender syst...
  • 15 篇 optimization

机构

  • 103 篇 national enginee...
  • 55 篇 school of comput...
  • 53 篇 school of cyber ...
  • 52 篇 shenzhen researc...
  • 39 篇 zhejiang lab
  • 37 篇 national enginee...
  • 36 篇 big data researc...
  • 33 篇 hubei engineerin...
  • 32 篇 services computi...
  • 31 篇 huazhong univers...
  • 29 篇 tencent ai lab
  • 29 篇 cluster and grid...
  • 29 篇 school of data s...
  • 28 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 national univers...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 21 篇 school of softwa...
  • 20 篇 university of sc...

作者

  • 137 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 30 篇 liao xiaofei
  • 28 篇 liu jun
  • 26 篇 chen enhong
  • 25 篇 wu baoyuan
  • 25 篇 hu shengshan
  • 23 篇 liu qi
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 li haizhou
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 17 篇 zhang leo yu
  • 16 篇 wang shuai
  • 16 篇 yu zhang

语言

  • 1,353 篇 英文
  • 118 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1480 条 记 录,以下是521-530 订阅
排序:
DCGG: A Dynamically Adaptive and Hardware-Software Coordinated Runtime System for GNN Acceleration on GPUs
收藏 引用
IEEE Transactions on Computers 2025年 第7期74卷 2293-2305页
作者: Xiao, Guoqing Xia, Li Chen, Yuedan Chen, Hongyang Yang, Wangdong Hunan University College of Computer Science Changsha410082 China Hunan University Electronic Engineering Changsha410082 China Hunan University Shenzhen Institute Shenzhen518063 China Central South University Big Data Institute Changsha410083 China Zhejiang Lab Research Center for Graph Computing Hangzhou311121 China
Graph neural networks (GNNs) are a prominent trend in graph-based deep learning, known for their capacity to produce high-quality node embeddings. However, the existing GNN framework design is only implemented from th... 详细信息
来源: 评论
MISA: UNVEILING THE VULNERABILITIES IN SPLIT FEDERATED LEARNING
arXiv
收藏 引用
arXiv 2023年
作者: Wan, Wei Ning, Yuxuan Hu, Shengshan Xue, Lulu Li, Minghui Zhang, Leo Yu Jin, Hai School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Computer Science and Technology Huazhong University of Science and Technology China School of Software Engineering Huazhong University of Science and Technology China School of Information and Communication Technology Griffith University Australia National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab China Hubei Key Laboratory of Distributed System Security China Hubei Engineering Research Center on Big Data Security China Cluster and Grid Computing Lab China
Federated learning (FL) and split learning (SL) are prevailing distributed paradigms in recent years. They both enable shared global model training while keeping data localized on users' devices. The former excels...
来源: 评论
OCDB: REVISITING CAUSAL DISCOVERY WITH A COMPREHENSIVE BENCHMARK AND EVALUATION FRAMEWORK
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Wei Huang, Hong Zhang, Guowen Shi, Ruize Yin, Kehan Lin, Yuanyuan Liu, Bang Huazhong University of Science and Technology China DIRO Université de Montréal & Mila Canada CIFAR AI Chair Canada The National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China
Large language models (LLMs) have excelled in various natural language processing tasks, but challenges in interpretability and trustworthiness persist, limiting their use in high-stakes fields. Causal discovery offer... 详细信息
来源: 评论
Medium-Term Water Consumption Forecasting Based on Deep Neural Networks
SSRN
收藏 引用
SSRN 2023年
作者: Gamboa, A. Gil Paneque, Pilar Trull, O. Troncoso, Alicia Data Science and Big Data Lab Pablo de Olavide University SevilleES-41013 Spain Department of Geography History and Philosophy Pablo de Olavide University SevilleES-41013 Spain Department of Applied Statistics and Operational Research and Quality Universitat Politècnica de València ValenciaES-46022 Spain
Water consumption forecasting is an essential tool for water management, as it allows for efficient planning and allocation of water resources, an undervalued but indispensable resource for all living beings. With the... 详细信息
来源: 评论
Shielding Federated Learning: Robust Aggregation with Adaptive Client Selection
arXiv
收藏 引用
arXiv 2022年
作者: Wan, Wei Hu, Shengshan Lu, Jianrong Yu Zhang, Leo Jin, Hai He, Yuanyuan School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Computer Science and Technology Huazhong University of Science and Technology China National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hubei Engineering Research Center on Big Data Security China Cluster and Grid Computing Lab School of Information Technology Deakin University Australia
Federated learning (FL) enables multiple clients to collaboratively train an accurate global model while protecting clients’ data privacy. However, FL is susceptible to Byzantine attacks from malicious participants. ... 详细信息
来源: 评论
Accelerating parallel sampling of diffusion models  24
Accelerating parallel sampling of diffusion models
收藏 引用
Proceedings of the 41st International Conference on Machine Learning
作者: Zhiwei Tang Jiasheng Tang Hao Luo Fan Wang Tsung-Hui Chang School of Science and Engineering The Chinese University of Hong Kong Shenzhen China DAMO Academy Alibaba Group and Hupan Lab Zhejiang Province DAMO Academy Alibaba Group School of Science and Engineering The Chinese University of Hong Kong Shenzhen China and Shenzhen Research Institute of Big Data Shenzhen China
Diffusion models have emerged as state-of-the-art generative models for image generation. However, sampling from diffusion models is usually time-consuming due to the inherent autoregressive nature of their sampling p...
来源: 评论
A Proxy Attack-Free Strategy for Practically Improving the Poisoning Efficiency in Backdoor Attacks
arXiv
收藏 引用
arXiv 2023年
作者: Li, Ziqiang Sun, Hong Xia, Pengfei Xia, Beihao Rui, Xue Zhang, Wei Guo, Qinglang Fu, Zhangjie Li, Bin Nanjing University of Information Science and Technology China Big Data and Decision Lab University of Science and Technology of China China Huawei Technologies Co. Ltd. China Huazhong University of Science and Technology China China Academic of Electronics and Information Technology China
Poisoning efficiency is crucial in poisoning-based backdoor attacks, as attackers aim to minimize the number of poisoning samples while maximizing attack efficacy. Recent studies have sought to enhance poisoning effic...
来源: 评论
Rethink Video Retrieval Representation for Video Captioning
SSRN
收藏 引用
SSRN 2024年
作者: Tian, Mingkai Li, Guorong Qi, Yuankai Wang, Shuhui Sheng, Quan Z. Huang, Qingming School of Computer Science and Technology Key Lab of Big Data Mining and Knowledge Management University of Chinese Academy of Sciences China School of Computing Macquarie University Australia Key Laboratory of Intelligent Information Processing Institute of Computer Technology Chinese Academy of Sciences China
Video captioning, a challenging task targeting the automatic generation of accurate and comprehensive descriptions based on video content, has witnessed substantial success recently driven by bridging video representa... 详细信息
来源: 评论
Which Pixel to Annotate: a label-Efficient Nuclei Segmentation Framework
arXiv
收藏 引用
arXiv 2022年
作者: Lou, Wei Li, Haofeng Li, Guanbin Han, Xiaoguang Wan, Xiang Shenzhen Research Institute of Big Data Guangdong Provincial Key Laboratory of Big Data Computing The Chinese University of Hong Kong at Shenzhen Shenzhen518172 China The School of Computer Science and Engineering Sun Yat-sen University Guangzhou510006 China Pazhou Lab Guangzhou510330 China
Recently deep neural networks, which require a large amount of annotated samples, have been widely applied in nuclei instance segmentation of H&E stained pathology images. However, it is inefficient and unnecessar... 详细信息
来源: 评论
CLAPSep: Leveraging Contrastive Pre-trained Model for Multi-Modal Query-Conditioned Target Sound Extraction
arXiv
收藏 引用
arXiv 2024年
作者: Ma, Hao Peng, Zhiyuan Li, Xu Shao, Mingjie Wu, Xixin Liu, Ju School of Information Science and Engineering Shandong University Qingdao China Department of Computer Science North Carolina State University NC United States ARC Lab Tencent PCG China Stanley Ho Big Data Decision Analytics Research Centre The Chinese University of Hong Kong Hong Kong
Universal sound separation (USS) aims to extract arbitrary types of sounds from real-world recordings. This can be achieved by language-queried target sound extraction (TSE), which typically consists of two components... 详细信息
来源: 评论