咨询与建议

限定检索结果

文献类型

  • 750 篇 期刊文献
  • 722 篇 会议
  • 8 册 图书

馆藏范围

  • 1,480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 973 篇 工学
    • 753 篇 计算机科学与技术...
    • 625 篇 软件工程
    • 181 篇 信息与通信工程
    • 179 篇 生物工程
    • 109 篇 控制科学与工程
    • 89 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 60 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 49 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
  • 534 篇 理学
    • 281 篇 数学
    • 197 篇 生物学
    • 106 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 51 篇 化学
    • 42 篇 系统科学
  • 264 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 135 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 62 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 16 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 54 篇 semantics
  • 43 篇 training
  • 39 篇 deep learning
  • 32 篇 deep neural netw...
  • 31 篇 computational mo...
  • 29 篇 feature extracti...
  • 29 篇 machine learning
  • 25 篇 big data
  • 24 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 21 篇 neural networks
  • 20 篇 contrastive lear...
  • 17 篇 object detection
  • 16 篇 convolution
  • 15 篇 memory managemen...
  • 15 篇 recommender syst...
  • 15 篇 optimization

机构

  • 103 篇 national enginee...
  • 55 篇 school of comput...
  • 53 篇 school of cyber ...
  • 52 篇 shenzhen researc...
  • 39 篇 zhejiang lab
  • 37 篇 national enginee...
  • 36 篇 big data researc...
  • 33 篇 hubei engineerin...
  • 32 篇 services computi...
  • 31 篇 huazhong univers...
  • 29 篇 tencent ai lab
  • 29 篇 cluster and grid...
  • 29 篇 school of data s...
  • 28 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 national univers...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 21 篇 school of softwa...
  • 20 篇 university of sc...

作者

  • 137 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 30 篇 liao xiaofei
  • 28 篇 liu jun
  • 26 篇 chen enhong
  • 25 篇 wu baoyuan
  • 25 篇 hu shengshan
  • 23 篇 liu qi
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 li haizhou
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 17 篇 zhang leo yu
  • 16 篇 wang shuai
  • 16 篇 yu zhang

语言

  • 1,353 篇 英文
  • 118 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1480 条 记 录,以下是601-610 订阅
排序:
Prior-Guided Adversarial Initialization for Fast Adversarial Training
arXiv
收藏 引用
arXiv 2022年
作者: Jia, Xiaojun Zhang, Yong Wei, Xingxing Wu, Baoyuan Ma, Ke Wang, Jue Cao, Xiaochun SKLOIS Institute of Information Engineering CAS Beijing China School of Cyber Security University of Chinese Academy of Sciences Beijing China Tencent AI Lab Shenzhen China Institute of Artificial Intelligence Beihang University Beijing China School of Data Science Secure Computing Lab of Big Data Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen China School of Computer Science and Technology UCAS Beijing China School of Cyber Science and Technology Shenzhen Campus Sun Yat-sen University Shenzhen518107 China
Fast adversarial training (FAT) effectively improves the efficiency of standard adversarial training (SAT). However, initial FAT encounters catastrophic overfitting, i.e., the robust accuracy against adversarial attac... 详细信息
来源: 评论
AgFlow: Fast model selection of penalized PCA via implicit regularization effects of Gradient Flow
arXiv
收藏 引用
arXiv 2021年
作者: Jiang, Haiyan Xiong, Haoyi Wu, Dongrui Liu, Ji Dou, Dejing Big Data Lab Baidu Research School of Artificial Intelligence and Automation Huazhong University of Science and Technology
Principal component analysis (PCA) has been widely used as an effective technique for feature extraction and dimension reduction. In the High Dimension Low Sample Size (HDLSS) setting, one may prefer modified principa... 详细信息
来源: 评论
Learning Summary-Worthy Visual Representation for Abstractive Summarization in Video
arXiv
收藏 引用
arXiv 2023年
作者: Xu, Zenan Meng, Xiaojun Wang, Yasheng Su, Qinliang Qiu, Zexuan Jiang, Xin Liu, Qun School of Computer Science and Engineering Sun Yat-sen University Guangzhou China Noah’s Ark Lab Huawei Technologie The Chinese University of Hong Kong Hong Kong Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China
Multimodal abstractive summarization for videos (MAS) requires generating a concise textual summary to describe the highlights of a video according to multimodal resources, in our case, the video content and its trans... 详细信息
来源: 评论
Tail Quantile Estimation for Non-preemptive Priority Queues
arXiv
收藏 引用
arXiv 2022年
作者: Guang, Jin Hong, Guiyu Chen, Xinyun Peng, Xi Chen, Li Bai, Bo Zhang, Gong Shenzhen Research Institute of Big Data Guangdong518172 China School of Data Science The Chinese University of Hong Kong Guangdong Shenzhen518172 China Theory Lab Central Research Institute 2012 Labs Huawei Technologies Co. Ltd Hong Kong
Motivated by applications in computing and telecommunication systems, we investigate the problem of estimating p-quantile of steady-state sojourn times in a single-server multi-class queueing system with non-preemptiv... 详细信息
来源: 评论
LOPO: An Out-of-order Layer Pulling Orchestration Strategy for Fast Microservice Startup
LOPO: An Out-of-order Layer Pulling Orchestration Strategy f...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Lin Gu Junhao Huang Shaoxing Huang Deze Zeng Bo Li Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China School of Computer Science China University of Geosciences Wuhan China Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong
Container based microservices have been widely applied to promote the cloud elasticity. The mainstream Docker containers are structured in layers, which are organized in stack with bottom-up dependency. To start a mic...
来源: 评论
FedMoS: Taming Client Drift in Federated Learning with Double Momentum and Adaptive Selection
FedMoS: Taming Client Drift in Federated Learning with Doubl...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Xiong Wang Yuxin Chen Yuqing Li Xiaofei Liao Hai Jin Bo Li National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China School of Cyber Science and Engineering Wuhan University Wuhan China Department of Computer Science and Engineering Hong Kong University of Science and Technology Hong Kong
Federated learning (FL) enables massive clients to collaboratively train a global model by aggregating their local updates without disclosing raw data. Communication has become one of the main bottlenecks that prolong...
来源: 评论
CIRI: Curricular Inactivation for Residue-aware One-shot Video Inpainting
CIRI: Curricular Inactivation for Residue-aware One-shot Vid...
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Weiying Zheng Cheng Xu Xuemiao Xu Wenxi Liu Shengfeng He South China University of Technology State Key Laboratory of Subtropical Building Science Ministry of Education Key Laboratory of Big Data and Intelligent Robot Guangdong Provincial Key Lab of Computational Intelligence and Cyberspace Information Fuzhou University Singapore Management University
Video inpainting aims at filling in missing regions of a video. However, when dealing with dynamic scenes with camera or object movements, annotating the inpainting target becomes laborious and impractical. In this pa...
来源: 评论
Unifying and Improving Graph Convolutional Neural Networks with Wavelet Denoising Filters  23
Unifying and Improving Graph Convolutional Neural Networks w...
收藏 引用
2023 World Wide Web Conference, WWW 2023
作者: Wan, Liangtian Li, Xiaona Han, Huijin Yan, Xiaoran Sun, Lu Ning, Zhaolong Xia, Feng Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province School of Software Dalian University of Technology Dalian China Research Center of Big Data Intelligence Research Institute of Artificial Intelligence Zhejiang Lab Hangzhou China Department of Communication Engineering Institute of Information Science Technology Dalian Maritime University Dalian China School of Communication and Information Engineering Chongqing University of Posts and Telecommunications Chongqing China School of Computing Technologies Rmit University Melbourne Australia
Graph convolutional neural network (GCN) is a powerful deep learning framework for network data. However, variants of graph neural architectures can lead to drastically different performance on different tasks. Model ... 详细信息
来源: 评论
Hyperbit: A Financial Temporal Knowledge Graph data Storage System
SSRN
收藏 引用
SSRN 2022年
作者: Yuan, Pingpeng Han, Sheng Zang, Shaoqi Shi, Xuanhua Jin, Hai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology Wuhan430074 China
In the field of finance, data has the characteristics of temporal multi-frequency and heterogeneous high dimension, and the traditional knowledge graph is not suitable to express the temporal relation of financial dat... 详细信息
来源: 评论
Peer is Your Pillar: A data-unbalanced Conditional GANs for Few-shot Image Generation
arXiv
收藏 引用
arXiv 2023年
作者: Li, Ziqiang Wang, Chaoyue Rui, Xue Xue, Chao Leng, Jiaxu Li, Bin Big Data and Decision Lab University of Science and Technology of China China The University of Sydney Australia JD Explore Academic China School of computer science Chongqing University of Posts and Telecommunications China CAS Key Laboratory of Technology in Geo-spatial Information Processing and Application System China
Few-shot image generation aims to train generative models using a small number of training images. When there are few images available for training (e.g. 10 images), Learning From Scratch (LFS) methods often generate ... 详细信息
来源: 评论