咨询与建议

限定检索结果

文献类型

  • 750 篇 期刊文献
  • 722 篇 会议
  • 8 册 图书

馆藏范围

  • 1,480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 973 篇 工学
    • 753 篇 计算机科学与技术...
    • 625 篇 软件工程
    • 181 篇 信息与通信工程
    • 179 篇 生物工程
    • 109 篇 控制科学与工程
    • 89 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 60 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 49 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
  • 534 篇 理学
    • 281 篇 数学
    • 197 篇 生物学
    • 106 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 51 篇 化学
    • 42 篇 系统科学
  • 264 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 135 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 62 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 16 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 54 篇 semantics
  • 43 篇 training
  • 39 篇 deep learning
  • 32 篇 deep neural netw...
  • 31 篇 computational mo...
  • 29 篇 feature extracti...
  • 29 篇 machine learning
  • 25 篇 big data
  • 24 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 21 篇 neural networks
  • 20 篇 contrastive lear...
  • 17 篇 object detection
  • 16 篇 convolution
  • 15 篇 memory managemen...
  • 15 篇 recommender syst...
  • 15 篇 optimization

机构

  • 103 篇 national enginee...
  • 55 篇 school of comput...
  • 53 篇 school of cyber ...
  • 52 篇 shenzhen researc...
  • 39 篇 zhejiang lab
  • 37 篇 national enginee...
  • 36 篇 big data researc...
  • 33 篇 hubei engineerin...
  • 32 篇 services computi...
  • 31 篇 huazhong univers...
  • 29 篇 tencent ai lab
  • 29 篇 cluster and grid...
  • 29 篇 school of data s...
  • 28 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 national univers...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 21 篇 school of softwa...
  • 20 篇 university of sc...

作者

  • 137 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 30 篇 liao xiaofei
  • 28 篇 liu jun
  • 26 篇 chen enhong
  • 25 篇 wu baoyuan
  • 25 篇 hu shengshan
  • 23 篇 liu qi
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 li haizhou
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 17 篇 zhang leo yu
  • 16 篇 wang shuai
  • 16 篇 yu zhang

语言

  • 1,353 篇 英文
  • 118 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1480 条 记 录,以下是691-700 订阅
排序:
TCSloT: Text Guided 3D Context and Slope Aware Triple Network for Dental Implant Position Prediction
TCSloT: Text Guided 3D Context and Slope Aware Triple Networ...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Xinquan Yang Jinheng Xie Xuechen Li Xuguang Li Linlin Shen Yongqiang Deng College of Computer Science and Software Engineering Shenzhen University Shenzhen China Show Lab National University of Singapore Singapore National Engineering Laboratory for Big Data System Computing Technology Shenzhen University Shenzhen China Department of Stomatology Shenzhen University General Hospital Shenzhen China
In implant prosthesis treatment, the surgical guide of implant is used to ensure accurate implantation. However, such design heavily relies on the manual location of the implant position. When deep neural network has ...
来源: 评论
RIFLE: Backpropagation in depth for deep transfer learning through re-initializing the fully-connected layer  37
RIFLE: Backpropagation in depth for deep transfer learning t...
收藏 引用
37th International Conference on Machine Learning, ICML 2020
作者: Li, Xingjian Xiong, Haoyi An, Haozhe Xu, Chengzhong Dou, Dejing Big Data Lab Baidu Research Beijing China Faculty of Science and Technology University of Macau China State Key Lab of IOTSC Department of Computer Science University of Macau China
Fine-tuning the deep convolution neural network (CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task. While the accuracy could be largely improved even when the trai... 详细信息
来源: 评论
SinCWIm: An imputation method for single-cell RNA sequence dropouts using weighted alternating least squares
收藏 引用
Computers in Biology and Medicine 2024年 171卷 108225-108225页
作者: Gong, Lejun Cui, Xiong Liu, Yang Lin, Cai Gao, Zhihong Jiangsu Key Lab of Big Data Security & Intelligent Processing School of Computer Science Nanjing University of Posts and Telecommunications Nanjing China Department of Burn Wound Repair and Regenerative Medicine Center The First Affiliated Hospital of Wenzhou Medical University Zhejiang Wenzhou325000 China Zhejiang Engineering Research Center of Intelligent Medicine The First Affiliated Hospital of Wenzhou Medical University Wenzhou325000 China
Background and objectives: Single-cell RNA sequencing (scRNA-seq) provides a powerful tool for exploring cellular heterogeneity, discovering novel or rare cell types, distinguishing between tissue-specific cellular co... 详细信息
来源: 评论
Attentive Symmetric Autoencoder for Brain MRI Segmentation
arXiv
收藏 引用
arXiv 2022年
作者: Huang, Junjia Li, Haofeng Li, Guanbin Wan, Xiang Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen China School of Computer Science and Engineering Sun Yat-Sen University Guangzhou China Pazhou Lab Guangzhou510330 China
Self-supervised learning methods based on image patch reconstruction have witnessed great success in training auto-encoders, whose pre-trained weights can be transferred to fine-tune other downstream tasks of image un... 详细信息
来源: 评论
AEFNet: Adaptive Scale Feature Based on Elastic-and-Funnel Neural Network for Healthcare Representation
AEFNet: Adaptive Scale Feature Based on Elastic-and-Funnel N...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Yang Liu Jialun Wu Yuhua Wei Bing Mao Chen Li Tieliang Gong School of Computer Science and Technology National Engineering Lab for Big Data Analytics Xi’an Jiaotong University Xi’an Shaanxi China
Healthcare Representation learning has been a key element to achieving state-of-the-art performance on healthcare prediction. Recent advances based Electronic Healthcare Records(EHRs) are mostly devoted to extracting ... 详细信息
来源: 评论
Hyperbolic Geometric Latent Diffusion Model for Graph Generation
arXiv
收藏 引用
arXiv 2024年
作者: Fu, Xingcheng Gao, Yisen Wei, Yuecen Sun, Qingyun Peng, Hao Li, Jianxin Li, Xianxian Key Lab of Education Blockchain and Intelligent Technology Ministry of Education Guangxi Normal University Guilin China Institute of Artificial Intelligence Beihang University Beijing China School of Software Beihang University Beijing China Beijing Advanced Innovation Center for Big Data and Brain Computing School of Computer Science and Engineering Beihang University Beijing China
Diffusion models have made significant contributions to computer vision, sparking a growing interest in the community recently regarding the application of them to graph generation. Existing discrete graph diffusion m... 详细信息
来源: 评论
Online Pseudo-Zeroth-Order Training of Neuromorphic Spiking Neural Networks
arXiv
收藏 引用
arXiv 2024年
作者: Xiao, Mingqing Meng, Qingyan Zhang, Zongpeng He, Di Lin, Zhouchen National Key Lab of General AI School of Intelligence Science and Technology Peking University China The Chinese University of Hong Kong Shenzhen China Shenzhen Research Institute of Big Data China Department of Biostatistics School of Public Health Peking University China Institute for Artificial Intelligence Peking University China Peng Cheng Laboratory China
Brain-inspired neuromorphic computing with spiking neural networks (SNNs) is a promising energy-efficient computational approach. However, successfully training SNNs in a more biologically plausible and neuromorphic-h... 详细信息
来源: 评论
Motif-based graph self-supervised learning for molecular property prediction
arXiv
收藏 引用
arXiv 2021年
作者: Zhang, Zaixi Liu, Qi Wang, Hao Lu, Chengqiang Lee, Chee-Kong Anhui Province Key Lab of Big Data Analysis and Application School of Computer Science and Technology University of Science and Technology of China Tencent America
Predicting molecular properties with data-driven methods has drawn much attention in recent years. Particularly, Graph Neural Networks (GNNs) have demonstrated remarkable success in various molecular generation and pr... 详细信息
来源: 评论
Deconfound Semantic Shift and Incompleteness in Incremental Few-shot Semantic Segmentation  39
Deconfound Semantic Shift and Incompleteness in Incremental ...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Wu, Yirui Xia, Yuhang Li, Hao Yuan, Lixin Chen, Junyang Liu, Jun Lu, Tong Wan, Shaohua Key Laboratory of Water Big Data Technology of Ministry of Water Resources Hohai University Nanjing China College of Computer Science and Software Engineering Shenzhen University Shenzhen China School of Computing and Communication Lancaster University Lancaster United Kingdom National Key Lab for Novel Software Technology Nanjing University Nanjing China Shenzhen Institute for Advanced Study University of Electronic Science and Technology of China Shenzhen China
Incremental few-shot semantic segmentation (IFSS) expands segmentation capacity of the trained model to segment new-class images with few samples. However, semantic meanings may shift from background to object class o... 详细信息
来源: 评论
Mandari: Multi-Modal Temporal Knowledge Graph-aware Sub-graph Embedding for Next-POI Recommendation
Mandari: Multi-Modal Temporal Knowledge Graph-aware Sub-grap...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Xiaoqian Liu Xiuyun Li Yuan Cao Fan Zhang Xiongnan Jin Jinpeng Chen School of Computer Science (National Pilot Software Engineering School) Beijing University of Posts and Telecommunications Beijing China Key Laboratory of Trustworthy Distributed Computing and Service (BUPT) Ministry of Education Beijing China The Technology Innovation Center of Cultural Tourism Big Data of Hebei Province Chengde China Hebei Normal University for Nationalities Chengde China Knowledge Discovery and Data Mining Research Center Zhejiang Lab Hangzhou China
Next-POI recommendation aims to explore from user check-in sequence to predict the next possible location to be visited. Existing methods are often difficult to model the implicit association of multi-modal data with ...
来源: 评论