咨询与建议

限定检索结果

文献类型

  • 750 篇 期刊文献
  • 722 篇 会议
  • 8 册 图书

馆藏范围

  • 1,480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 973 篇 工学
    • 753 篇 计算机科学与技术...
    • 625 篇 软件工程
    • 181 篇 信息与通信工程
    • 179 篇 生物工程
    • 109 篇 控制科学与工程
    • 89 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 60 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 49 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
  • 534 篇 理学
    • 281 篇 数学
    • 197 篇 生物学
    • 106 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 51 篇 化学
    • 42 篇 系统科学
  • 264 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 135 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 62 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 16 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 54 篇 semantics
  • 43 篇 training
  • 39 篇 deep learning
  • 32 篇 deep neural netw...
  • 31 篇 computational mo...
  • 29 篇 feature extracti...
  • 29 篇 machine learning
  • 25 篇 big data
  • 24 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 21 篇 neural networks
  • 20 篇 contrastive lear...
  • 17 篇 object detection
  • 16 篇 convolution
  • 15 篇 memory managemen...
  • 15 篇 recommender syst...
  • 15 篇 optimization

机构

  • 103 篇 national enginee...
  • 55 篇 school of comput...
  • 53 篇 school of cyber ...
  • 52 篇 shenzhen researc...
  • 39 篇 zhejiang lab
  • 37 篇 national enginee...
  • 36 篇 big data researc...
  • 33 篇 hubei engineerin...
  • 32 篇 services computi...
  • 31 篇 huazhong univers...
  • 29 篇 tencent ai lab
  • 29 篇 cluster and grid...
  • 29 篇 school of data s...
  • 28 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 national univers...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 21 篇 school of softwa...
  • 20 篇 university of sc...

作者

  • 137 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 30 篇 liao xiaofei
  • 28 篇 liu jun
  • 26 篇 chen enhong
  • 25 篇 wu baoyuan
  • 25 篇 hu shengshan
  • 23 篇 liu qi
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 li haizhou
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 17 篇 zhang leo yu
  • 16 篇 wang shuai
  • 16 篇 yu zhang

语言

  • 1,353 篇 英文
  • 118 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1480 条 记 录,以下是731-740 订阅
排序:
ToFM: Topic-specific Facet Mining by Facet Propagation within Clusters  12
ToFM: Topic-specific Facet Mining by Facet Propagation withi...
收藏 引用
12th IEEE International Conference on big Knowledge, ICBK 2021
作者: Li, Hongxuan Wei, Bifan Liu, Jun Guo, Zhaotong Qi, Jingchao Wu, Bei Liu, Yong Shi, Yuanyuan Xi'An Jiaotong University School of Computer Science and Technology Xi'an China Xi'An Jiaotong University National Engineering Lab For Big Data Analytics Xi'an China School of Continuous Education Xi'An Jiaotong University Xi'an China Servyou Software Group Co. Ltd. China
Mining the facets of topics is an essential task for information retrieval, information extraction and knowledge base construction. For the topics in courses, there are three challenges: different topics have differen... 详细信息
来源: 评论
A Survey of Trustworthy Graph Learning: Reliability, Explainability, and Privacy Protection
arXiv
收藏 引用
arXiv 2022年
作者: Wu, Bingzhe Li, Jintang Yu, Junchi Bian, Yatao Zhang, Hengtong Chen, Chaochao Hou, Chengbin Fu, Guoji Chen, Liang Xu, Tingyang Rong, Yu Zheng, Xiaolin Huang, Junzhou He, Ran Wu, Baoyuan Sun, Guangyu Cui, Peng Zheng, Zibing Liu, Zhe Zhao, Peilin Tencent AI Lab United States Sun Yat-Sen University China Institute of Automation Chinese Academy of Sciences China Zhejiang University China University of Texas Arlington United States School of Data Science Shenzhen Research Institute of Big Data The Chinese University of Hong Kong Shenzhen China Peking University China Tsinghua University China Zhejiang Lab China
Deep graph learning has achieved remarkable progresses in both business and scientific areas ranging from finance and e-commerce, to drug and advanced material discovery. Despite these progresses, how to ensure variou... 详细信息
来源: 评论
PointCA: Evaluating the Robustness of 3D Point Cloud Completion Models Against Adversarial Examples
arXiv
收藏 引用
arXiv 2022年
作者: Hu, Shengshan Zhang, Junwei Liu, Wei Hou, Junhui Li, Minghui Zhang, Leo Yu Jin, Hai Sun, Lichao School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Computer Science and Technology Huazhong University of Science and Technology China School of Software Engineering Huazhong University of Science and Technology China Cluster and Grid Computing Lab China National Engineering Research Center for Big Data Technology and System Hubei Engineering Research Center on Big Data Security China Hubei Key Laboratory of Distributed System Security China Services Computing Technology and System Lab China City University of Hong Kong Hong Kong Deakin University Australia Lehigh University United States
Point cloud completion, as the upstream procedure of 3D recognition and segmentation, has become an essential part of many tasks such as navigation and scene understanding. While various point cloud completion models ... 详细信息
来源: 评论
Challenges and Approaches for Mitigating Byzantine Attacks in Federated Learning
arXiv
收藏 引用
arXiv 2021年
作者: Shi, Junyu Wan, Wei Hu, Shengshan Lu, Jianrong Zhang, Leo Yu School of Cyber Science and Engineering Huazhong University of Science and Technology China National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab Hubei Engineering Research Center on Big Data Security China School of Information Technology Deakin University Australia
Recently emerged federated learning (FL) is an attractive distributed learning framework in which numerous wireless end-user devices can train a global model with the data remained autochthonous. Compared with the tra... 详细信息
来源: 评论
Self-Supervised Teaching and Learning of Representations on Graphs  23
Self-Supervised Teaching and Learning of Representations on ...
收藏 引用
2023 World Wide Web Conference, WWW 2023
作者: Wan, Liangtian Fu, Zhenqiang Sun, Lu Wang, Xianpeng Xu, Gang Yan, Xiaoran Xia, Feng Key Laboratory for Ubiquitous Network Service Software of Liaoning Province School of Software Dalian University of Technology Dalian China Department of Communication Engineering Institute of Information Science Technology Dalian Maritime University Dalian China State Key Laboratory of Marine Resource Utilization in South China Sea School of Information and Communication Engineering Hainan University Haikou China State Key Laboratory of Millimeter Waves School of Information Science and Engineering Southeast University Nanjing China Research Center of Big Data Intelligence Research Institute of Artificial Intelligence Zhejiang Lab Hangzhou China School of Computing Technologies Rmit University Melbourne Australia
Recent years have witnessed significant advances in graph contrastive learning (GCL), while most GCL models use graph neural networks as encoders based on supervised learning. In this work, we propose a novel graph le... 详细信息
来源: 评论
Electricity Consumption Forecasting with Outliers Handling Based On Clustering and Deep Learning with Application to the Algerian Market
SSRN
收藏 引用
SSRN 2022年
作者: Hadjout, Dalil Sebaa, Abderrazak Torres, José F. Martínez-Álvarez, Francisco Data Science and Big Data Lab Pablo de Olavide University SevilleES-41013 Spain LIMED Laboratory Faculty of Exact Sciences University of Bejaia Bejaia06000 Algeria Laboratoire LITAN Ecole Supérieure en Sciences et Technologies de l’Informatique et du Numérique Amizour Bejaia 06000 Algeria
The reduction of electricity loss and the e ective management of electricity demand are vital operations for production and distribution electricity enterprises. To achieve these goals, accurate forecasts of aggregate... 详细信息
来源: 评论
label-Semantic-Enhanced Online Hashing for Efficient Cross-modal Retrieval
Label-Semantic-Enhanced Online Hashing for Efficient Cross-m...
收藏 引用
IEEE International Conference on Multimedia and Expo (ICME)
作者: Xueting Jiang Xin Liu Yiu-Ming Cheung Xing Xu Shukai Zheng Taihao Li College of Computer Science and Technology Huaqiao University Xiamen China Zhejiang Lab Hangzhou China Xiamen Key Lab. of Comput. Vis. Pattern Recognit. & Fujian Key Lab. of Big Data Intell. and Security Xiamen China Department of Computer Science Hong Kong Baptist University Hong Kong SAR China Dept. of Computer Sci. and Eng. University of Electronic Science and Technology of China Chengdu China
Existing online cross-modal hashing methods often treat the semantic label categories independently to correlate the semantically similar data instances, which intrinsically ignore the potential dependency between the...
来源: 评论
Attention Mechanism Balances Semantic Representation and Syntactic Representation  2020
Attention Mechanism Balances Semantic Representation and Syn...
收藏 引用
Proceedings of the 2020 9th International Conference on Computing and Pattern Recognition
作者: Ci Liu Xuetong Zhao Xiang Li Yawei Zhao Big Data Analysis Technology Lab University of Chinese Academy of Science Beijing China School of Management Capital Normal University Beijing China
Semantic information and syntactic information are two essential dimensions of language. In recent years, most researches focus on extracting semantic information or how to extract useful information from syntactic de... 详细信息
来源: 评论
Optimal margin distribution machine for multi-instance learning  29
Optimal margin distribution machine for multi-instance learn...
收藏 引用
29th International Joint Conference on Artificial Intelligence, IJCAI 2020
作者: Zhang, Teng Jin, Hai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology China
Multi-instance learning (MIL) is a celebrated learning framework where each example is represented as a bag of instances. An example is negative if it has no positive instances, and vice versa if at least one positive... 详细信息
来源: 评论
Equivariant Graph Hierarchy-Based Neural Networks
arXiv
收藏 引用
arXiv 2022年
作者: Han, Jiaqi Huang, Wenbing Xu, Tingyang Rong, Yu Department of Computer Science and Technology Tsinghua University China Gaoling School of Artificial Intelligence Renmin University of China China Beijing Key Laboratory of Big Data Management and Analysis Methods Beijing China Tencent AI Lab China
Equivariant Graph neural Networks (EGNs) are powerful in characterizing the dynamics of multi-body physical systems. Existing EGNs conduct flat message passing, which, yet, is unable to capture the spatial/dynamical h... 详细信息
来源: 评论