咨询与建议

限定检索结果

文献类型

  • 750 篇 期刊文献
  • 722 篇 会议
  • 8 册 图书

馆藏范围

  • 1,480 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 973 篇 工学
    • 753 篇 计算机科学与技术...
    • 625 篇 软件工程
    • 181 篇 信息与通信工程
    • 179 篇 生物工程
    • 109 篇 控制科学与工程
    • 89 篇 电气工程
    • 85 篇 生物医学工程(可授...
    • 61 篇 光学工程
    • 60 篇 电子科学与技术(可...
    • 51 篇 机械工程
    • 49 篇 化学工程与技术
    • 38 篇 动力工程及工程热...
    • 32 篇 交通运输工程
    • 24 篇 网络空间安全
    • 22 篇 仪器科学与技术
    • 22 篇 土木工程
  • 534 篇 理学
    • 281 篇 数学
    • 197 篇 生物学
    • 106 篇 统计学(可授理学、...
    • 103 篇 物理学
    • 51 篇 化学
    • 42 篇 系统科学
  • 264 篇 管理学
    • 140 篇 管理科学与工程(可...
    • 135 篇 图书情报与档案管...
    • 54 篇 工商管理
  • 74 篇 医学
    • 62 篇 临床医学
    • 53 篇 基础医学(可授医学...
    • 38 篇 药学(可授医学、理...
  • 59 篇 法学
    • 50 篇 社会学
  • 20 篇 经济学
    • 20 篇 应用经济学
  • 16 篇 农学
  • 10 篇 教育学
  • 6 篇 文学
  • 1 篇 军事学
  • 1 篇 艺术学

主题

  • 54 篇 semantics
  • 43 篇 training
  • 39 篇 deep learning
  • 32 篇 deep neural netw...
  • 31 篇 computational mo...
  • 29 篇 feature extracti...
  • 29 篇 machine learning
  • 25 篇 big data
  • 24 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 task analysis
  • 22 篇 data mining
  • 22 篇 forecasting
  • 21 篇 neural networks
  • 20 篇 contrastive lear...
  • 17 篇 object detection
  • 16 篇 convolution
  • 15 篇 memory managemen...
  • 15 篇 recommender syst...
  • 15 篇 optimization

机构

  • 103 篇 national enginee...
  • 55 篇 school of comput...
  • 53 篇 school of cyber ...
  • 52 篇 shenzhen researc...
  • 39 篇 zhejiang lab
  • 37 篇 national enginee...
  • 36 篇 big data researc...
  • 33 篇 hubei engineerin...
  • 32 篇 services computi...
  • 31 篇 huazhong univers...
  • 29 篇 tencent ai lab
  • 29 篇 cluster and grid...
  • 29 篇 school of data s...
  • 28 篇 hubei key labora...
  • 26 篇 peng cheng labor...
  • 23 篇 national univers...
  • 23 篇 school of comput...
  • 22 篇 fujian provincia...
  • 21 篇 school of softwa...
  • 20 篇 university of sc...

作者

  • 137 篇 jin hai
  • 130 篇 hai jin
  • 43 篇 xiaofei liao
  • 30 篇 liao xiaofei
  • 28 篇 liu jun
  • 26 篇 chen enhong
  • 25 篇 wu baoyuan
  • 25 篇 hu shengshan
  • 23 篇 liu qi
  • 22 篇 zhou tao
  • 21 篇 haikun liu
  • 20 篇 li haizhou
  • 20 篇 pan jeng-shyang
  • 19 篇 long zheng
  • 19 篇 zou deqing
  • 18 篇 deqing zou
  • 17 篇 li chen
  • 17 篇 zhang leo yu
  • 16 篇 wang shuai
  • 16 篇 yu zhang

语言

  • 1,353 篇 英文
  • 118 篇 其他
  • 10 篇 中文
  • 2 篇 西班牙文
检索条件"机构=Data Science&Big Data Lab"
1480 条 记 录,以下是781-790 订阅
排序:
MedLSAM: Localize and Segment Anything Model for 3D CT Images
arXiv
收藏 引用
arXiv 2023年
作者: Lei, Wenhui Xu, Wei Li, Kang Zhang, Xiaofan Zhang, Shaoting School of Electronic Information and Electrical Engineering Shanghai Jiao Tong University Shanghai China Shanghai AI Lab Shanghai China School of Biomedical Engineering Division of Life Sciences and Medicine University of Science and Technology of China Hefei China West China Biomedical Big Data Center West China Hospital Sichuan University Chengdu China
Recent advancements in foundation models have shown significant potential in medical image analysis. However, there is still a gap in models specifically designed for medical image localization. To address this, we in... 详细信息
来源: 评论
SoLar: sinkhorn label refinery for imbalanced partial-label learning  22
SoLar: sinkhorn label refinery for imbalanced partial-label ...
收藏 引用
Proceedings of the 36th International Conference on Neural Information Processing Systems
作者: Haobo Wang Mingxuan Xia Yixuan Li Yuren Mao Lei Feng Gang Chen Junbo Zhao Key Lab of Intelligent Computing based Big Data of Zhejiang Province Zhejiang University School of Software Technology Zhejiang University Department of Computer Sciences University of Wisconsin-Madison College of Computer Science Chongqing University and Center for Advanced Intelligence Project RIKEN
Partial-label learning (PLL) is a peculiar weakly-supervised learning task where the training samples are generally associated with a set of candidate labels instead of single ground truth. While a variety of label di...
来源: 评论
Convolutional Transformer with Similarity-based Boundary Prediction for Action Segmentation
Convolutional Transformer with Similarity-based Boundary Pre...
收藏 引用
International Conference on Tools for Artificial Intelligence (ICTAI)
作者: Dazhao Du Bing Su Yu Li Zhongang Qi Lingyu Si Ying Shan Institute of Software Chinese Academy of Science University of Chinese Academy of Sciences Gaoling School of Artificial Intelligence Renmin University of China Beijing Key Laboratory of Big Data Management and Analysis Methods International Digital Economy Academy Tencent PCG ARC Lab
Action classification has made great progress, but segmenting and recognizing actions from long videos remains a challenging problem. Recently, Transformer-based models with strong sequence modeling ability have succe... 详细信息
来源: 评论
Exploring the common principal subspace of deep features in neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Liu, Haoran Xiong, Haoyi Wang, Yaqing An, Haozhe Wu, Dongrui Dou, Dejing Big Data Lab Baidu Research Department of Computer Science University of Maryland College ParkMD United States School of Artificial Intelligence and Automation Huazhong University of Science and Technology
We find that different Deep Neural Networks (DNNs) trained with the same dataset share a common principal subspace in latent spaces, no matter in which architectures (e.g., Convolutional Neural Networks (CNNs), Multi-... 详细信息
来源: 评论
Automatically derived stateful network functions including non-field attributes
Automatically derived stateful network functions including n...
收藏 引用
IEEE International Conference on Trust, Security and Privacy in Computing and Communications (TrustCom)
作者: Bin Yuan Shengyao Sun Xianjun Deng Deqing Zou Haoyu Chen Shenghui Li Hai Jin School of Cyber Science and Engineering Huazhong University of Science and Technology Wuhan China National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hubei Engineering Research Center on Big Data Security Shenzhen Research Institute Huazhong University of Science and Technology Shenzhen China School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China Cluster and Grid Computing Lab
The modern network consists of thousands of network devices from different suppliers that perform distinct code-pendent functions, such as routing, switching, modifying header fields, and access control across physica... 详细信息
来源: 评论
Not All Diffusion Model Activations Have Been Evaluated as Discriminative Features
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Cyber Science and Tech. Shenzhen Campus of Sun Yat-sen University China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China
Diffusion models are initially designed for image generation. Recent research shows that the internal signals within their backbones, named activations, can also serve as dense features for various discriminative task... 详细信息
来源: 评论
Suppress Content Shift: Better Diffusion Features via Off-the-Shelf Generation Techniques
arXiv
收藏 引用
arXiv 2024年
作者: Meng, Benyuan Xu, Qianqian Wang, Zitai Yang, Zhiyong Cao, Xiaochun Huang, Qingming Institute of Information Engineering CAS China School of Cyber Security University of Chinese Academy of Sciences China Key Lab. of Intelligent Information Processing Institute of Computing Technology CAS China Peng Cheng Laboratory China School of Computer Science and Tech. University of Chinese Academy of Sciences China Key Laboratory of Big Data Mining and Knowledge Management CAS China School of Cyber Science and Tech. Sun Yat-sen University Shenzhen Campus China
Diffusion models are powerful generative models, and this capability can also be applied to discrimination. The inner activations of a pre-trained diffusion model can serve as features for discriminative tasks, namely...
来源: 评论
JERALD: high-fidelity dark matter, stellar mass and neutral hydrogen maps from fast N-body simulations
arXiv
收藏 引用
arXiv 2025年
作者: Rigo, Mauro Trotta, Roberto Viel, Matteo Theoretical and Scientific Data Science SISSA Via Bonomea 265 Trieste34136 Italy INFN National Institute for Nuclear Physics Via Valerio 2 Trieste34127 Italy ICSC Centro Nazionale di Ricerca in High Performance Computing Big Data e Quantum Computing Via Magnanelli 2 Bologna Italy Astrophysics Group Physics Department Blackett Lab Imperial College London Prince Consort Road LondonSW7 2AZ United Kingdom INAF Osservatorio Astronomico di Trieste Via G. B. Tiepolo 11 TriesteI-34143 Italy
We present a new code and approach, JERALD—JAX Enhanced Resolution Approximate Lagrangian Dynamics—, that improves on and extends the Lagrangian Deep Learning method of Dai & Seljak (2021), producing high-resolu... 详细信息
来源: 评论
Syntax-enhanced pre-trained model  59
Syntax-enhanced pre-trained model
收藏 引用
Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing, ACL-IJCNLP 2021
作者: Xu, Zenan Guo, Daya Tang, Duyu Su, Qinliang Shou, Linjun Gong, Ming Zhong, Wanjun Quan, Xiaojun Jiang, Daxin Duan, Nan School of Computer Science and Engineering Sun Yat-Sen University Guangzhou China Microsoft Research Asia Beijing China Microsoft Search Technology Center Asia Beijing China Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou China Key Lab. of Machine Intelligence and Advanced Computing Ministry of Education China
We study the problem of leveraging the syntactic structure of text to enhance pre-trained models such as BERT and RoBERTa. Existing methods utilize syntax of text either in the pre-training stage or in the fine-tuning... 详细信息
来源: 评论
A Universal data-Driven Spatial Interpolation Framework for the Measurements of Environmental Sites
SSRN
收藏 引用
SSRN 2023年
作者: Cheng, Zhen Guo, Yuzhe Xue, Wenbo Du, Qinyi Shanghai Environmental Protection Key Lab of Environmental Big Data and Intelligent Decision-making School of Environmental Science and Engineering Shanghai Jiao Tong University Shanghai China Center of Air Quality Simulation and System Analysis Chinese Academy of Environmental Planning Beijing100043 China MoE Key Lab of Artificial Intelligence AI Institute Shanghai Jiao Tong University Shanghai200240 China
The accurate spatial distribution of environmental pollutant metrics is crucial for evaluating human exposure and managing the environment. Spatial interpolation, which relies on the measurements of limited environmen... 详细信息
来源: 评论