咨询与建议

限定检索结果

文献类型

  • 23 篇 期刊文献
  • 5 篇 会议

馆藏范围

  • 28 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 22 篇 理学
    • 15 篇 数学
    • 3 篇 统计学(可授理学、...
    • 2 篇 生物学
    • 1 篇 物理学
    • 1 篇 大气科学
    • 1 篇 系统科学
  • 19 篇 工学
    • 9 篇 计算机科学与技术...
    • 7 篇 软件工程
    • 5 篇 控制科学与工程
    • 4 篇 信息与通信工程
    • 1 篇 力学(可授工学、理...
    • 1 篇 交通运输工程
    • 1 篇 生物工程
    • 1 篇 安全科学与工程
  • 4 篇 管理学
    • 4 篇 管理科学与工程(可...
    • 1 篇 工商管理
    • 1 篇 图书情报与档案管...
  • 1 篇 农学

主题

  • 3 篇 optimization
  • 2 篇 integer programm...
  • 1 篇 regularized
  • 1 篇 traveling salesp...
  • 1 篇 per-instance alg...
  • 1 篇 bernoulli method
  • 1 篇 cancer
  • 1 篇 statistical test...
  • 1 篇 stationary distr...
  • 1 篇 m-matrix
  • 1 篇 computational ef...
  • 1 篇 cancer genomics
  • 1 篇 large eddy simul...
  • 1 篇 control
  • 1 篇 newton method
  • 1 篇 convolution
  • 1 篇 stackelberg game
  • 1 篇 gray market
  • 1 篇 systems
  • 1 篇 parallel imports

机构

  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...
  • 5 篇 victorian instit...
  • 5 篇 research core ce...
  • 5 篇 department of bi...
  • 5 篇 institute of cli...
  • 5 篇 institute of com...

作者

  • 6 篇 trautmann heike
  • 4 篇 prager raphael p...
  • 4 篇 kerschke pascal
  • 4 篇 koch thorsten
  • 2 篇 chen wei-kun
  • 2 篇 serrano felipe
  • 2 篇 kleinheinz korti...
  • 2 篇 gottwald leona
  • 2 篇 rehfeldt daniel
  • 2 篇 chen ying
  • 2 篇 müller benjamin
  • 2 篇 weninger dieter
  • 2 篇 maher stephen j.
  • 2 篇 bossek jakob
  • 2 篇 schlesner matthi...
  • 2 篇 wegscheider fabi...
  • 2 篇 hojny christophe...
  • 2 篇 chmiela antonia
  • 2 篇 mühmer erik
  • 2 篇 halbig katrin

语言

  • 26 篇 英文
  • 1 篇 其他
  • 1 篇 中文
检索条件"机构=Data Science: Statistics and Optimization"
28 条 记 录,以下是1-10 订阅
排序:
Nullifying the Inherent Bias of Non-invariant Exploratory Landscape Analysis Features  26th
Nullifying the Inherent Bias of Non-invariant Exploratory ...
收藏 引用
26th International Conference on Applications of Evolutionary Computation, EvoApplications 2023, held as part of EvoStar 2023
作者: Prager, Raphael Patrick Trautmann, Heike Data Science: Statistics and Optimization University of Münster Münster Germany Data Management and Biometrics University of Twente Enschede Netherlands
Exploratory landscape analysis (ELA) in single-objective black-box optimization relies on a comprehensive and large set of numerical features characterizing problem instances. Those foster problem understanding and se... 详细信息
来源: 评论
Using Reinforcement Learning for Per-Instance Algorithm Configuration on the TSP
Using Reinforcement Learning for Per-Instance Algorithm Conf...
收藏 引用
2023 IEEE Symposium Series on Computational Intelligence, SSCI 2023
作者: Vinzent Seiler, Moritz Rook, Jeroen Heins, Jonathan Ludger Preub, Oliver Bossek, Jakob Trautmann, Heike University of Twente Data Management and Biometrics Enschede Netherlands Tu Dresden Big Data Analytics in Transportation Dresden Germany Aachen University Chair for Ai Methodology Rwth Aachen Germany University of Münster Data Science: Statistics and Optimization Münster Germany University of Twente Data Science: Statistics and Optimization Enschede Netherlands
Automated Algorithm Configuration (AAC) usually takes a global perspective: it identifies a parameter configuration for an (optimization) algorithm that maximizes a performance metric over a set of instances. However,... 详细信息
来源: 评论
Peak-A-Boo! Generating Multi-objective Multiple Peaks Benchmark Problems with Precise Pareto Sets  12th
Peak-A-Boo! Generating Multi-objective Multiple Peaks Benchm...
收藏 引用
12th International Conference on Evolutionary Multi-Criterion optimization, EMO 2023
作者: Schäpermeier, Lennart Kerschke, Pascal Grimme, Christian Trautmann, Heike Big Data Analytics in Transportation TU Dresden & ScaDS.AI Dresden Germany Data Science: Statistics and Optimization University of Münster Münster Germany
The design and choice of benchmark suites are ongoing topics of discussion in the multi-objective optimization community. Some suites provide a good understanding of their Pareto sets and fronts, such as the well-know... 详细信息
来源: 评论
Facial expression recognition under occlusion conditions based on multi-feature cross-attention
收藏 引用
Journal of Intelligent and Fuzzy Systems 2024年 第4期46卷 9841-9856页
作者: Guo, Sheng Tan, Mian Cai, Shan Zhang, Zaijun Liang, Yihui Feng, Hongxi Zou, Xue Wang, Lin School of Data Science and Information Engineering Guizhou Key Laboratory of Pattern Recognition and Intelligent System Guizhou Minzu University Guiyang China School of Mathematics and Statistics Qiannan Normal University for Nationalities Key Laboratory of Complex Systems and Intelligent Optimization of Guizhou Province Duyun China Zhongshan Institute University of Electronic Science and Technology of China Zhongshan China Guizhou Aerospace Tianma Electromechanical Technology Co LTD Zunyi China
Although facial expression recognition (FER) has a wide range of applications, it may be difficult to achieve under local occlusion conditions which may result in the loss of valuable expression features. This issue h... 详细信息
来源: 评论
Using Reinforcement Learning for Per-Instance Algorithm Configuration on the TSP
Using Reinforcement Learning for Per-Instance Algorithm Conf...
收藏 引用
IEEE Symposium Series on Computational Intelligence (SSCI)
作者: Moritz Vinzent Seiler Jeroen Rook Jonathan Heins Oliver Ludger Preuß Jakob Bossek Heike Trautmann Data Science: Statistics and Optimization University of Münster Münster Germany Data Management and Biometrics University of Twente Enschede Netherlands Big Data Analytics in Transportation TU Dresden Dresden Germany Chair for AI Methodology RWTH Aachen University Aachen Germany Data Science: Statistics and Optimization University of Twente Enschede Netherlands
Automated Algorithm Configuration (AAC) usually takes a global perspective: it identifies a parameter configuration for an (optimization) algorithm that maximizes a performance metric over a set of instances. However,...
来源: 评论
Advancements on multi-fidelity random Fourier neural networks: application to hurricane modeling for offshore wind energy
Advancements on multi-fidelity random Fourier neural network...
收藏 引用
AIAA science and Technology Forum and Exposition, AIAA SciTech Forum 2025
作者: Davis, Owen Geraci, Gianluca Wentz, Jacqueline M. King, Ryan N. Cortiella, Alexandre Rybchuk, Alex Gomez, Miguel Sanchez Deskos, Georgios Motamed, Mohammad Optimization and Uncertainty Quantification Sandia National Laboratories AlbuquerqueNM United States Computational Data Science Sandia National Laboratories LivermoreCA United States National Wind Technology Center National Renewable Energy Laboratory GoldenCO United States Department of Applied Mathematics and Statistics University of New Mexico AlbuquerqueNM United States
Multi-fidelity approaches are emerging as effective strategies in computational science to handle otherwise intractable tasks like Uncertainty Quantification (UQ), training of Machine Learning (ML) models, and optimiz... 详细信息
来源: 评论
Numerical Methods for a Class of Quadratic Matrix Equations
收藏 引用
应用数学 2024年 第4期37卷 962-970页
作者: GUAN Jinrui WANG Zhixin SHAO Rongxia School of Mathematics and Statistics Taiyuan Normal UniversityJinzhong 030619China Shanxi Key Laboratory of Intelligent Optimization Computing and Blockchain Technology Taiyuan Normal UniversityJinzhong 030619China School of Statistics and Data Science Xinjiang University of Finance and EconomicsUrumqi 830012China
Quadratic matrix equations arise in many elds of scienti c computing and engineering *** this paper,we consider a class of quadratic matrix *** a certain condition,we rst prove the existence of minimal nonnegative sol... 详细信息
来源: 评论
A COLLECTION OF DEEP LEARNING-BASED FEATURE-FREE APPROACHES FOR CHARACTERIZING SINGLE-OBJECTIVE CONTINUOUS FITNESS LANDSCAPES
arXiv
收藏 引用
arXiv 2022年
作者: Seiler, Moritz Vinzent Prager, Raphael Patrick Kerschke, Pascal Trautmann, Heike Data Science: Statistics and Optimization University of Münster Germany Big Data Analytics in Transportation Tu Dresden Germany University of Twente Netherlands
Exploratory Landscape Analysis is a powerful technique for numerically characterizing landscapes of single-objective continuous optimization problems. Landscape insights are crucial both for problem understanding as w... 详细信息
来源: 评论
A goodness-of-fit test for functional time series with applications to Ornstein-Uhlenbeck processes
arXiv
收藏 引用
arXiv 2022年
作者: Álvarez-Liébana, J. López-Pérez, Alejandra González-Manteiga, W. Febrero-Bande, M. Department of Statistics and Data Science Faculty of Statistics Complutense University of Madrid Spain Department of Statistics Mathematical Analysis and Optimization Universidade de Santiago de Compostela Spain
High-frequency financial data can be collected as a sequence of curves over time;for example, as intra—day price, currently one of the topics of greatest interest in finance. The Functional data Analysis framework pr... 详细信息
来源: 评论
Hybridizing Target- and SHAP-encoded Features for Algorithm Selection in Mixed-variable Black-box optimization
arXiv
收藏 引用
arXiv 2024年
作者: Dietrich, Konstantin Prager, Raphael Patrick Doerr, Carola Trautmann, Heike Big Data Analytics in Transportation TU Dresden Germany ScaDS.AI Dresden Germany Data Science: Statistics and Optimization University of Münster Germany Sorbonne Université CNRS LIP6 Paris France Machine Learning and Optimisation Paderborn University Germany Data Management and Biometrics Group University of Twente Netherlands
Exploratory landscape analysis (ELA) is a well-established tool to characterize optimization problems via numerical features. ELA is used for problem comprehension, algorithm design, and applications such as automated... 详细信息
来源: 评论