咨询与建议

限定检索结果

文献类型

  • 515 篇 期刊文献
  • 177 篇 会议
  • 3 册 图书

馆藏范围

  • 695 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 414 篇 工学
    • 192 篇 计算机科学与技术...
    • 164 篇 软件工程
    • 90 篇 生物医学工程(可授...
    • 88 篇 生物工程
    • 52 篇 电气工程
    • 52 篇 信息与通信工程
    • 51 篇 化学工程与技术
    • 46 篇 控制科学与工程
    • 44 篇 光学工程
    • 37 篇 电子科学与技术(可...
    • 28 篇 材料科学与工程(可...
    • 26 篇 土木工程
    • 23 篇 机械工程
    • 22 篇 仪器科学与技术
    • 22 篇 环境科学与工程(可...
    • 20 篇 船舶与海洋工程
    • 19 篇 交通运输工程
  • 363 篇 理学
    • 125 篇 数学
    • 125 篇 生物学
    • 100 篇 物理学
    • 75 篇 统计学(可授理学、...
    • 55 篇 化学
    • 23 篇 系统科学
  • 123 篇 医学
    • 98 篇 临床医学
    • 79 篇 基础医学(可授医学...
    • 45 篇 药学(可授医学、理...
    • 44 篇 公共卫生与预防医...
  • 92 篇 管理学
    • 56 篇 管理科学与工程(可...
    • 29 篇 工商管理
    • 29 篇 图书情报与档案管...
  • 27 篇 农学
  • 15 篇 教育学
  • 12 篇 经济学
  • 10 篇 法学
  • 2 篇 文学

主题

  • 17 篇 deep learning
  • 14 篇 machine learning
  • 9 篇 predictive model...
  • 8 篇 accuracy
  • 7 篇 computational mo...
  • 7 篇 forecasting
  • 7 篇 pathology
  • 6 篇 software enginee...
  • 6 篇 bioinformatics
  • 6 篇 lung cancer
  • 5 篇 covid-19
  • 5 篇 image segmentati...
  • 5 篇 diagnosis
  • 5 篇 data models
  • 5 篇 training
  • 4 篇 big data
  • 4 篇 optimization
  • 4 篇 social networks
  • 4 篇 benchmark testin...
  • 4 篇 stochastic syste...

机构

  • 11 篇 bioinformatics a...
  • 11 篇 centre for machi...
  • 10 篇 bioinformatics a...
  • 10 篇 bioinformatics a...
  • 9 篇 school of future...
  • 8 篇 interdisciplinar...
  • 8 篇 department of co...
  • 8 篇 applied mathemat...
  • 8 篇 computational an...
  • 7 篇 infn magic group...
  • 7 篇 infn magic group...
  • 7 篇 aerosol and nano...
  • 7 篇 department of ma...
  • 7 篇 cancer program b...
  • 7 篇 school of data s...
  • 6 篇 the oskar klein ...
  • 6 篇 department of mo...
  • 6 篇 department of bi...
  • 6 篇 dipartimento di ...
  • 6 篇 department of pa...

作者

  • 40 篇 masuda naoki
  • 22 篇 pardamean bens
  • 20 篇 bens pardamean
  • 11 篇 chien ting-ying
  • 11 篇 jasra ajay
  • 10 篇 mahmood faisal
  • 9 篇 naoki masuda
  • 9 篇 sahu manoranjan
  • 8 篇 green d.
  • 8 篇 williamson drew ...
  • 8 篇 lu ming y.
  • 7 篇 acciari v.a.
  • 7 篇 mazin d.
  • 7 篇 niyato dusit
  • 7 篇 berti a.
  • 7 篇 martínez m.
  • 7 篇 zhang lei
  • 7 篇 colombo e.
  • 7 篇 barrio j.a.
  • 7 篇 mannheim k.

语言

  • 557 篇 英文
  • 132 篇 其他
  • 5 篇 中文
  • 4 篇 朝鲜文
  • 3 篇 德文
  • 3 篇 法文
检索条件"机构=Data Science & Engineering Program"
695 条 记 录,以下是531-540 订阅
排序:
Chronic radiation-associated dysphagia in oropharyngeal cancer survivors: Towards age-adjusted dose constraints for deglutitive muscles
收藏 引用
CLINICAL AND TRANSLATIONAL RADIATION ONCOLOGY 2019年 18卷 16-22页
作者: Christopherson, Kaitlin M. Ghosh, Alokananda Sherif, Abdallah Mohamed, Radwan Kamal, Mona Fuller, David Department of Radiation Oncology The University of Texas MD Anderson Cancer Center Houston TX United States Department of Biostatistics and Data Science University of Texas School of Public Health Houston TX United States Department of Clinical Oncology University of Alexandria Alexandria Egypt Department of Emergency Medicine The University of Texas MD Anderson Cancer Center Houston TX United States Baylor College of Medicine Houston TX United States Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital Charlestown MA United States Department of Radiation Oncology The University of Texas Medical Branch Galveston TX United States Department of Head and Neck Surgery The University of Texas MD Anderson Cancer Center Houston TX United States Department of Thoracic & Head and Neck Oncology The University of Texas MD Anderson Cancer Center Houston TX United States Medical Physics Program The University of Texas Graduate School of Biomedical Sciences Houston TX United States Department of Computer Science University of Illinois at Chicago Chicago IL United States Department of Electrical and Computer Engineering The University of Iowa Iowa City IA United States
Objectives: We sought to model chronic radiation-associated dysphagia (RAD) in patients given intensity-modulated radiation therapy (IMRT) for oropharyngeal squamous cell cancer (OPSCC) as a function of age and dose t... 详细信息
来源: 评论
Reproducible brain-wide association studies require thousands of individuals (Mar, 10.1038/s41586-022-04492-9, 2022)
收藏 引用
NATURE 2022年 第7911期605卷 E11-E11页
作者: Marek, Scott Tervo-Clemmens, Brenden Calabro, Finnegan J. Montez, David F. Kay, Benjamin P. Hatoum, Alexander S. Donohue, Meghan Rose Foran, William Miller, Ryland L. Hendrickson, Timothy J. Malone, Stephen M. Kandala, Sridhar Feczko, Eric Miranda-Dominguez, Oscar Graham, Alice M. Earl, Eric A. Perrone, Anders J. Cordova, Michaela Doyle, Olivia Moore, Lucille A. Conan, Gregory M. Uriarte, Johnny Snider, Kathy Lynch, Benjamin J. Wilgenbusch, James C. Pengo, Thomas Tam, Angela Chen, Jianzhong Newbold, Dillan J. Zheng, Annie Seider, Nicole A. Van, Andrew N. Metoki, Athanasia Chauvin, Roselyne J. Laumann, Timothy O. Greene, Deanna J. Petersen, Steven E. Garavan, Hugh Thompson, Wesley K. Nichols, Thomas E. Yeo, B. T. Thomas Barch, Deanna M. Luna, Beatriz Fair, Damien A. Dosenbach, Nico U. F. Department of Psychiatry Washington University School of Medicine St Louis MO USA Department of Neurology Washington University School of Medicine St Louis MO USA Department of Psychological and Brain Sciences Washington University in St Louis St Louis MO USA Department of Psychiatry Massachusetts General Hospital Harvard Medical School Boston MA USA Department of Psychology University of Pittsburgh Pittsburgh PA USA Department of Psychiatry University of Pittsburgh Pittsburgh PA USA Department of Bioengineering University of Pittsburgh Pittsburgh PA USA Department of Biomedical Engineering Washington University in St Louis St Louis MO USA Department of Radiology Washington University School of Medicine St Louis MO USA Department of Neurological Surgery Washington University School of Medicine St Louis MO USA Program in Occupational Therapy Washington University School of Medicine St Louis MO USA Department of Pediatrics Washington University School of Medicine St Louis MO USA University of Minnesota Informatics Institute University of Minnesota Minneapolis MN USA Department of Psychology University of Minnesota Minneapolis MN USA Masonic Institute for the Developing Brain University of Minnesota Medical School Minneapolis MN USA Department of Pediatrics University of Minnesota Medical School Minneapolis MN USA Department of Psychiatry Oregon Health and Science University Portland OR USA Minnesota Supercomputing Institute University of Minnesota Minneapolis MN USA Institute of Child Development University of Minnesota Medical School Minneapolis MN USA Department of Electrical and Computer Engineering National University of Singapore Singapore Singapore Centre for Sleep and Cognition National University of Singapore Singapore Singapore Centre for Translational MR Research National University of Singapore Singapore Singapore N.1 Institute for Health Institute for Digital Medicine National University of Singapore Singapore Sing
来源: 评论
Heterochromatin drives compartmentalization of inverted and conventional nuclei (vol 570, pg 395, 2019)
收藏 引用
NATURE 2019年 第7771期572卷 E22-E22页
作者: Falk, Martin Feodorova, Yana Naumova, Natalia Imakaev, Maxim Lajoie, Bryan R. Leonhardt, Heinrich Joffe, Boris Dekker, Job Fudenberg, Geoffrey Solovei, Irina Mirny, Leonid A. Institute for Medical Engineering and Science and Department of Physics Massachusetts Institute of Technology Cambridge USA Department of Medical Biology Medical University-Plovdiv Plovdiv Bulgaria Biozentrum Ludwig Maximilians University Munich Planegg-Martinsried Germany Howard Hughes Medical Institute and Program in Systems Biology Department of Biochemistry and Molecular Pharmacology University of Massachusetts Medical School Worcester USA Epinomics Inc Menlo Park USA Illumina Inc San Diego USA Gladstone Institutes of Data Science and Biotechnology University of California San Francisco San Francisco USA
An Amendment to this paper has been published and can be accessed via a link at the top of the paper.
来源: 评论
DP-GEN: A concurrent learning platform for the generation of reliable deep learning based potential energy models
arXiv
收藏 引用
arXiv 2019年
作者: Wang, Haidi Chen, Weijie Zeng, Jinzhe Zhang, Linfeng Wang, Han Zhang, Yuzhi Weinan, E. Yuanpei College of Peking University Beijing100871 China School of Electronic Science and Applied Physics Hefei University of Technology Hefei230601 China Academy for Advanced Interdisciplinary Studies Peking University Beijing100871 China School of Chemistry and Molecular Engineering East China Normal University Shanghai200062 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Beijing Institute of Big Data Research Beijing100871 China Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Beijing Institute of Big Data Research Beijing100871 China
In recent years, promising deep learning based interatomic potential energy surface (PES) models have been proposed that can potentially allow us to perform molecular dynamics simulations for large scale systems with ... 详细信息
来源: 评论
Efficient construction method for phase diagrams using uncertainty sampling
收藏 引用
Physical Review Materials 2019年 第3期3卷 033802-033802页
作者: Kei Terayama Ryo Tamura Yoshitaro Nose Hidenori Hiramatsu Hideo Hosono Yasushi Okuno Koji Tsuda RIKEN Center for Advanced Intelligence Project Tokyo 103-0027 Japan Medical Sciences Innovation Hub Program RIKEN Cluster for Science Technology and Innovation Hub Kanagawa 230-0045 Japan Graduate School of Medicine Kyoto University Kyoto 606-8507 Japan International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science Ibaraki 305-0044 Japan Research and Services Division of Materials Data and Integrated System National Institute for Materials Science Ibaraki 305-0047 Japan Graduate School of Frontier Sciences University of Tokyo Chiba 277-8568 Japan Department of Materials Science and Engineering Kyoto University Kyoto 606-8501 Japan Laboratory for Materials and Structures Institute of Innovative Research Tokyo Institute of Technology Yokohama 226-8503 Japan Materials Research Center for Element Strategy Tokyo Institute of Technology Yokohama 226-8503 Japan
We develop a method to efficiently construct phase diagrams using machine learning. Uncertainty sampling (US) in active learning is utilized to intensively sample around phase boundaries. Here, we demonstrate construc... 详细信息
来源: 评论
Ten quick tips for deep learning in biology
arXiv
收藏 引用
arXiv 2021年
作者: Lee, Benjamin D. Gitter, Anthony Greene, Casey S. Raschka, Sebastian Maguire, Finlay Titus, Alexander J. Kessler, Michael D. Lee, Alexandra J. Chevrette, Marc G. Stewart, Paul Allen Britto-Borges, Thiago Cofer, Evan M. Yu, Kun-Hsing Carmona, Juan Jose Fertig, Elana J. Kalinin, Alexandr A. Signal, Beth Lengerich, Benjamin J. Triche, Timothy J. Boca, Simina M. In-Q-Tel Labs School of Engineering and Applied Sciences Harvard University Department of Genetics Harvard Medical School United States Department of Biostatistics and Medical Informatics University of Wisconsin-Madison MadisonWI United States Morgridge Institute for Research MadisonWI United States Department of Systems Pharmacology and Translational Therapeutics Perelman School of Medicine University of Pennsylvania PhiladelphiaPA United States Department of Biochemistry and Molecular Genetics University of Colorado School of Medicine AuroraCO United States Center for Health AI University of Colorado School of Medicine AuroraCO United States Department of Statistics University of Wisconsin Madison United States Faculty of Computer Science Dalhousie University Canada University of New Hampshire Bioeconomy.XYZ United States Department of Oncology Johns Hopkins University United States Institute for Genome Sciences University of Maryland School of Medicine United States Genomics and Computational Biology Graduate Program University of Pennsylvania United States Department of Systems Pharmacology and Translational Therapeutics University of Pennsylvania United States Wisconsin Institute for Discovery Department of Plant Pathology University of Wisconsin-Madison United States Department of Biostatistics and Bioinformatics Moffitt Cancer Center TampaFL United States Section of Bioinformatics and Systems Cardiology Klaus Tschira Institute for Integrative Computational Cardiology University Hospital Heidelberg Germany University Hospital Heidelberg Germany Lewis-Sigler Institute for Integrative Genomics Princeton University PrincetonNJ United States Graduate Program in Quantitative and Computational Biology Princeton University PrincetonNJ United States Department of Biomedical Informatics Harvard Medical School United States Department of Pathology Brigham and Women's Hospital United States Philips Healthcare CambridgeMA United States Philips Research
Machine learning is a modern approach to problem-solving and task automation. In particular, machine learning is concerned with the development and applications of algorithms that can recognize patterns in data and us... 详细信息
来源: 评论
High temperature structure detection in ferromagnets
arXiv
收藏 引用
arXiv 2018年
作者: Cao, Yuan Neykov, Matey Liu, Han Program in Applied and Computational Mathematics Princeton University PrincetonNJ United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA United States Department of Electrical Engineering and Computer Science Northwestern University EvanstonIL United States
This paper studies structure detection problems in high temperature ferromagnetic (positive interaction only) Ising models. The goal is to distinguish whether the underlying graph is empty, i.e., the model consists of... 详细信息
来源: 评论
End-to-end symmetry preserving inter-atomic potential energy model for finite and extended systems  32
End-to-end symmetry preserving inter-atomic potential energy...
收藏 引用
32nd Conference on Neural Information Processing Systems, NeurIPS 2018
作者: Zhang, Linfeng Han, Jiequn Wang, Han Saidi, Wissam A. Car, Roberto Weinan, E. Program in Applied and Computational Mathematics Princeton University United States Institute of Applied Physics and Computational Mathematics China CAEP Software Center for High Performance Numerical Simulation China Department of Mechanical Engineering and Materials Science University of Pittsburgh United States Department of Chemistry Department of Physics Princeton University United States Princeton Institute for the Science and Technology of Materials Princeton University United States Department of Mathematics Princeton University United States Beijing Institute of Big Data Research China
Machine learning models are changing the paradigm of molecular modeling, which is a fundamental tool for material science, chemistry, and computational biology. Of particular interest is the inter-atomic potential ene... 详细信息
来源: 评论
Deep neural network for Wannier function centers
arXiv
收藏 引用
arXiv 2019年
作者: Zhang, Linfeng Chen, Mohan Wu, Xifan Wang, Han Weinan, E. Car, Roberto Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States CAPT HEDPS College of Engineering Peking University Beijing100871 China Department of Physics Temple University PhiladelphiaPA19122 United States Laboratory of Computational Physics Institute of Applied Physics and Computational Mathematics Huayuan Road 6 Beijing100088 China Department of Mathematics and Program in Applied and Computational Mathematics Princeton University PrincetonNJ08544 United States Beijing Institute of Big Data Research Beijing100871 China Department of Chemistry Department of Physics Program in Applied and Computational Mathematics Princeton Institute for the Science and Technology of Materials Princeton University PrincetonNJ08544 United States
We introduce a deep neural network (DNN) model that assigns the position of the centers of the electronic charge in the snapshots of a molecular dynamics trajectory. The electronic centers are uniquely specified by th... 详细信息
来源: 评论
Correction: Identifcation and functional analyses of drought stress resistance genes by transcriptomics of the Mongolian grassland plant Chloris virgata
收藏 引用
BMC plant biology 2025年 第1期25卷 257页
作者: Ganbayar Namuunaa Baldorj Bujin Ayumi Yamagami Byambajav Bolortuya Shintaro Kawabata Hirotaka Ogawa Asaka Kanatani Minami Shimizu Anzu Minami Keiichi Mochida Takuya Miyakawa Bekh-Ochir Davaapurev Tadao Asami Javzan Batkhuu Takeshi Nakano Laboratory of Plant Chemical Biology Graduate School of Biostudies Kyoto University Sakyo-ku Kyoto 606-8502 Japan. Laboratory of Plant Chemical Biology Graduate School of Biostudies Kyoto University Sakyo-ku Kyoto 606-8502 Japan. yamagami.ayumi.6s@kyoto-u.ac.jp. RIKEN Center for Sustainable Resource Science Tsurumi-ku Yokohama 230 - 0045 Kanagawa Japan. Kihara Institute for Biological Research Yokohama City University Totsuka-ku Yokohama Kanagawa 244-0813 Japan. Baton Zone Program RIKEN Tsurumi-ku Yokohama 230 - 0045 Kanagawa Japan. School of Information and Data Sciences Nagasaki University Bunkyo-machi Nagasaki 852-8521 Japan. School of Engineering and Technology National University of Mongolia Ulaanbaatar 14201 Mongolia. Graduate School of Agricultural and Life Sciences The University of Tokyo Bunkyo-ku Tokyo 113-8657 Japan. Laboratory of Plant Chemical Biology Graduate School of Biostudies Kyoto University Sakyo-ku Kyoto 606-8502 Japan. nakano.takeshi.6x@kyoto-u.ac.jp.
来源: 评论