Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical...
详细信息
Anomaly detection(AD) has been extensively studied and applied across various scenarios in recent years. However, gaps remain between the current performance and the desired recognition accuracy required for practical *** paper analyzes two fundamental failure cases in the baseline AD model and identifies key reasons that limit the recognition accuracy of existing approaches. Specifically, by Case-1, we found that the main reason detrimental to current AD methods is that the inputs to the recovery model contain a large number of detailed features to be recovered, which leads to the normal/abnormal area has not/has been recovered into its original state. By Case-2, we surprisingly found that the abnormal area that cannot be recognized in image-level representations can be easily recognized in the feature-level representation. Based on the above observations, we propose a novel recover-then-discriminate(ReDi) framework for *** takes a self-generated feature map(e.g., histogram of oriented gradients) and a selected prompted image as explicit input information to address the identified in Case-1. Additionally, a feature-level discriminative network is introduced to amplify abnormal differences between the recovered and input representations. Extensive experiments on two widely used yet challenging AD datasets demonstrate that ReDi achieves state-of-the-art recognition accuracy.
Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online *** study addresses challenges associated with small datasets and class imbalances in sarca...
详细信息
Sarcasm detection in text data is an increasingly vital area of research due to the prevalence of sarcastic content in online *** study addresses challenges associated with small datasets and class imbalances in sarcasm detection by employing comprehensive data pre-processing and Generative Adversial Network(GAN)based augmentation on diverse datasets,including iSarcasm,SemEval-18,and *** research offers a novel pipeline for augmenting sarcasm data with Reverse Generative Adversarial Network(RGAN).The proposed RGAN method works by inverting labels between original and synthetic data during the training *** inversion of labels provides feedback to the generator for generating high-quality data closely resembling the original ***,the proposed RGAN model exhibits performance on par with standard GAN,showcasing its robust efficacy in augmenting text *** exploration of various datasets highlights the nuanced impact of augmentation on model performance,with cautionary insights into maintaining a delicate balance between synthetic and original *** methodological framework encompasses comprehensive data pre-processing and GAN-based augmentation,with a meticulous comparison against Natural Language Processing Augmentation(NLPAug)as an alternative augmentation ***,the F1-score of our proposed technique outperforms that of the synonym replacement augmentation technique using *** increase in F1-score in experiments using RGAN ranged from 0.066%to 1.054%,and the use of standard GAN resulted in a 2.88%increase in *** proposed RGAN model outperformed the NLPAug method and demonstrated comparable performance to standard GAN,emphasizing its efficacy in text data augmentation.
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theo...
Foundation models(FMs) [1] have revolutionized software development and become the core components of large software systems. This paradigm shift, however, demands fundamental re-imagining of software engineering theories and methodologies [2]. Instead of replacing existing software modules implemented by symbolic logic, incorporating FMs' capabilities to build software systems requires entirely new modules that leverage the unique capabilities of ***, while FMs excel at handling uncertainty, recognizing patterns, and processing unstructured data, we need new engineering theories that support the paradigm shift from explicitly programming and maintaining user-defined symbolic logic to creating rich, expressive requirements that FMs can accurately perceive and implement.
Low back pain is a leading cause of disability globally, is often associated with degenerative lumbar spine conditions. Accurate diagnosis of these conditions is critical but challenging due to the subjective nature o...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distri...
详细信息
Recommender systems are effective in mitigating information overload, yet the centralized storage of user data raises significant privacy concerns. Cross-user federated recommendation(CUFR) provides a promising distributed paradigm to address these concerns by enabling privacy-preserving recommendations directly on user devices. In this survey, we review and categorize current progress in CUFR, focusing on four key aspects: privacy, security, accuracy, and efficiency. Firstly,we conduct an in-depth privacy analysis, discuss various cases of privacy leakage, and then review recent methods for privacy protection. Secondly, we analyze security concerns and review recent methods for untargeted and targeted *** untargeted attack methods, we categorize them into data poisoning attack methods and parameter poisoning attack methods. For targeted attack methods, we categorize them into user-based methods and item-based methods. Thirdly,we provide an overview of the federated variants of some representative methods, and then review the recent methods for improving accuracy from two categories: data heterogeneity and high-order information. Fourthly, we review recent methods for improving training efficiency from two categories: client sampling and model compression. Finally, we conclude this survey and explore some potential future research topics in CUFR.
This study proposes a malicious code detection model DTL-MD based on deep transfer learning, which aims to improve the detection accuracy of existing methods in complex malicious code and data scarcity. In the feature...
详细信息
In the realm of artificial intelligence (AI), a notable challenge has surfaced: adversarial attacks, these attacks involve altering input data to mislead AI models. Developing defensive measures against adversarial at...
详细信息
In the rapidly evolving beauty industry, consumers are often bombarded with an overwhelming array of skincare brands and products, making the quest for the perfect skincare regimen a daunting task. This saturation of ...
详细信息
Dialogue-based relation extraction(DialogRE) aims to predict relationships between two entities in dialogue. Current approaches to dialogue relationship extraction grapple with long-distance entity relationships in di...
详细信息
Dialogue-based relation extraction(DialogRE) aims to predict relationships between two entities in dialogue. Current approaches to dialogue relationship extraction grapple with long-distance entity relationships in dialogue data as well as complex entity relationships, such as a single entity with multiple types of connections. To address these issues, this paper presents a novel approach for dialogue relationship extraction termed the hypergraphs and heterogeneous graphs model(HG2G). This model introduces a two-tiered structure, comprising dialogue hypergraphs and dialogue heterogeneous graphs, to address the shortcomings of existing methods. The dialogue hypergraph establishes connections between similar nodes using hyper-edges and utilizes hypergraph convolution to capture multi-level features. Simultaneously, the dialogue heterogeneous graph connects nodes and edges of different types, employing heterogeneous graph convolution to aggregate cross-sentence information. Ultimately, the integrated nodes from both graphs capture the semantic nuances inherent in dialogue. Experimental results on the DialogRE dataset demonstrate that the HG2G model outperforms existing state-of-the-art methods.
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions a...
详细信息
Co-saliency detection within a single image is a common vision problem that has not yet been well addressed. Existing methods often used a bottom-up strategy to infer co-saliency in an image in which salient regions are firstly detected using visual primitives such as color and shape and then grouped and merged into a co-saliency map. However, co-saliency is intrinsically perceived complexly with bottom-up and top-down strategies combined in human vision. To address this problem, this study proposes a novel end-toend trainable network comprising a backbone net and two branch nets. The backbone net uses ground-truth masks as top-down guidance for saliency prediction, whereas the two branch nets construct triplet proposals for regional feature mapping and clustering, which drives the network to be bottom-up sensitive to co-salient regions. We construct a new dataset of 2019 natural images with co-saliency in each image to evaluate the proposed method. Experimental results show that the proposed method achieves state-of-the-art accuracy with a running speed of 28 fps.
暂无评论