咨询与建议

限定检索结果

文献类型

  • 43,344 篇 会议
  • 26,779 篇 期刊文献
  • 693 册 图书

馆藏范围

  • 70,816 篇 电子文献
  • 1 种 纸本馆藏

日期分布

学科分类号

  • 43,647 篇 工学
    • 32,412 篇 计算机科学与技术...
    • 26,979 篇 软件工程
    • 10,776 篇 信息与通信工程
    • 6,684 篇 控制科学与工程
    • 6,003 篇 生物工程
    • 5,141 篇 生物医学工程(可授...
    • 5,009 篇 电气工程
    • 3,948 篇 电子科学与技术(可...
    • 3,497 篇 光学工程
    • 2,690 篇 机械工程
    • 2,257 篇 仪器科学与技术
    • 2,114 篇 化学工程与技术
    • 2,059 篇 动力工程及工程热...
    • 2,059 篇 网络空间安全
    • 1,838 篇 安全科学与工程
    • 1,661 篇 交通运输工程
  • 25,258 篇 理学
    • 12,641 篇 数学
    • 7,175 篇 生物学
    • 6,734 篇 物理学
    • 4,911 篇 统计学(可授理学、...
    • 2,510 篇 化学
    • 2,454 篇 系统科学
  • 13,564 篇 管理学
    • 7,768 篇 管理科学与工程(可...
    • 6,373 篇 图书情报与档案管...
    • 3,848 篇 工商管理
  • 5,744 篇 医学
    • 4,658 篇 临床医学
    • 4,125 篇 基础医学(可授医学...
    • 2,585 篇 公共卫生与预防医...
    • 2,324 篇 药学(可授医学、理...
  • 2,546 篇 法学
    • 2,160 篇 社会学
  • 1,525 篇 经济学
  • 1,196 篇 农学
  • 1,033 篇 教育学
  • 351 篇 文学
  • 137 篇 军事学
  • 108 篇 艺术学
  • 12 篇 哲学
  • 12 篇 历史学

主题

  • 2,357 篇 accuracy
  • 2,098 篇 deep learning
  • 1,927 篇 machine learning
  • 1,658 篇 computer science
  • 1,635 篇 data models
  • 1,615 篇 data mining
  • 1,565 篇 training
  • 1,533 篇 feature extracti...
  • 1,348 篇 computational mo...
  • 1,283 篇 predictive model...
  • 1,163 篇 internet of thin...
  • 1,087 篇 real-time system...
  • 1,005 篇 support vector m...
  • 963 篇 artificial intel...
  • 947 篇 convolutional ne...
  • 716 篇 optimization
  • 677 篇 cloud computing
  • 655 篇 security
  • 609 篇 semantics
  • 586 篇 neural networks

机构

  • 978 篇 cavendish labora...
  • 947 篇 department of ph...
  • 886 篇 oliver lodge lab...
  • 870 篇 physikalisches i...
  • 604 篇 university of ch...
  • 562 篇 fakultät physik ...
  • 520 篇 department of ph...
  • 512 篇 horia hulubei na...
  • 504 篇 school of physic...
  • 500 篇 imperial college...
  • 496 篇 school of physic...
  • 488 篇 stfc rutherford ...
  • 488 篇 nikhef national ...
  • 483 篇 h.h. wills physi...
  • 480 篇 iccub universita...
  • 479 篇 school of physic...
  • 473 篇 physik-institut ...
  • 472 篇 department of co...
  • 469 篇 henryk niewodnic...
  • 465 篇 school of physic...

作者

  • 252 篇 barter w.
  • 239 篇 a. gomes
  • 232 篇 beiter a.
  • 222 篇 bellee v.
  • 222 篇 s. chen
  • 215 篇 brundu d.
  • 210 篇 c. alexa
  • 210 篇 bowcock t.j.v.
  • 210 篇 blake t.
  • 209 篇 j. m. izen
  • 207 篇 g. bella
  • 207 篇 j. strandberg
  • 207 篇 d. calvet
  • 207 篇 c. amelung
  • 205 篇 boettcher t.
  • 204 篇 betancourt c.
  • 204 篇 amato s.
  • 203 篇 borsato m.
  • 199 篇 bencivenni g.
  • 197 篇 bay a.

语言

  • 54,962 篇 英文
  • 15,358 篇 其他
  • 628 篇 中文
  • 32 篇 日文
  • 18 篇 德文
  • 17 篇 斯洛文尼亚文
  • 16 篇 法文
  • 6 篇 朝鲜文
  • 3 篇 西班牙文
  • 2 篇 阿拉伯文
  • 1 篇 捷克文
  • 1 篇 俄文
检索条件"机构=Data Science Program Computer Science Department School of Computer Science"
70816 条 记 录,以下是1371-1380 订阅
排序:
Multi-Stage Predict+Optimize for (Mixed Integer) Linear programs  38
Multi-Stage Predict+Optimize for (Mixed Integer) Linear Prog...
收藏 引用
38th Conference on Neural Information Processing Systems, NeurIPS 2024
作者: Hu, Xinyi Lee, Jasper C.H. Lee, Jimmy H.M. Stuckey, Peter J. Department of Computer Science and Engineering The Chinese University of Hong Kong Shatin N.T. Hong Kong Department of Computer Science University of California Davis United States Department of Data Science and AI Monash University Clayton Australia
The recently-proposed framework of Predict+Optimize tackles optimization problems with parameters that are unknown at solving time, in a supervised learning setting. Prior frameworks consider only the scenario where a...
来源: 评论
Exploring Deep Learning architectures for Crop and Weed Identification  3
Exploring Deep Learning architectures for Crop and Weed Iden...
收藏 引用
3rd International Conference on Artificial Intelligence For Internet of Things, AIIoT 2024
作者: Akaash Dravid, J. Karthik, R.K. Sreekumar, K. School of Computing Amrita Vishwavidyapeetham Department of Computer Science and IT Kochi India
In agriculture, weeds always prove to be a major threat. It is tedious to do weeding at a later stage when the crops and the weeds are significantly grown. Incorporating technology in agriculture has revolutionized bo... 详细信息
来源: 评论
Deep Reinforcement Learning in Stock Trading: Evaluating DDPG and DQN Strategies  6
Deep Reinforcement Learning in Stock Trading: Evaluating DDP...
收藏 引用
6th IEEE International Conference on Emerging Smart Computing and Informatics, ESCI 2024
作者: Kodurupaka, Nithin Basavadeepthi, H.M. Pecheti, Shiva Teja Amudha, J. Amrita School of Computing Department of Computer Science and Engineering Bengaluru India
This study presents a comparative analysis of the Deep Q-Network (DQN) and Deep Deterministic Policy Gradient (DDPG) reinforcement learning algorithms in the context of stock trading, focusing on historical stock pric... 详细信息
来源: 评论
Hidden Emotion Detection using Speech, Text, Facial Expressions and Neural Networks  5
Hidden Emotion Detection using Speech, Text, Facial Expressi...
收藏 引用
5th IEEE International Conference on Communication, Computing and Industry 6.0, C2I6 2024
作者: Reddy, Ravula Tarun Palaniswamy, Suja Amrita School of Computing Department of Computer Science and Engineering Bengaluru India
Understanding and recognition of human emotions are very crucial in various fields. This paper proposes a new approach to show the different feelings that are hidden using multi-modalities like video, audio, and textu... 详细信息
来源: 评论
Household Waste Classification Algorithms Based on Various Convolutional Neural Networks: A Review of Performance Optimization  21
Household Waste Classification Algorithms Based on Various C...
收藏 引用
21st International computer Conference on Wavelet Active Media Technology and Information Processing, ICCWAMTIP 2024
作者: Renxiang, Huang Jia, Chen Jianping, Li School of Artificial Intelligence and Big Data Sichuan University of Arts and Science Chengdu635002 China School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu611731 China
This paper reviews the research progress of deep learning-based household waste classification algorithms. It first introduces the importance of household waste classification and the application value of deep learnin... 详细信息
来源: 评论
Latent Logic Tree Extraction for Event Sequence Explanation from LLMs  41
Latent Logic Tree Extraction for Event Sequence Explanation ...
收藏 引用
41st International Conference on Machine Learning, ICML 2024
作者: Song, Zitao Yang, Chao Wang, Chaojie An, Bo Li, Shuang School of Computer Science and Engineering Nanyang Technological University Singapore School of Data Science The Chinese University of Hong Kong Shenzhen China Skywork AI Singapore
Modern high-stakes systems, such as healthcare or robotics, often generate vast streaming event sequences. Our goal is to design an efficient, plug- and-play tool to elicit logic tree-based explanations from Large Lan... 详细信息
来源: 评论
RBLA: Rank-Based-LoRA-Aggregation for Fine-Tuning Heterogeneous Models in FLaaS  31st
RBLA: Rank-Based-LoRA-Aggregation for Fine-Tuning Heterogen...
收藏 引用
31st International Conference on Web Services, ICWS 2024, Held as Part of the Services Conference Federation, SCF 2024
作者: Chen, Shuaijun Tavallaie, Omid Nazemi, Niousha Zomaya, Albert Y. School of Computer Science The University of Sydney Camperdown Australia Department of Engineering Science University of Oxford Oxford United Kingdom
Federated Learning (FL) is a promising privacy-aware distributed learning framework that can be deployed on various devices, such as mobile phones, desktops, and devices equipped with CPUs or GPUs. In the context of s... 详细信息
来源: 评论
An optimal hybrid cascade regional convolutional network for cyberattack detection
An optimal hybrid cascade regional convolutional network for...
收藏 引用
作者: Alqahtani, Ali Khan, Surbhi Bhatia Department of Networks and Communications Engineering College of Computer Science and Information Systems Najran University Najran Saudi Arabia Department of Data Science School of Science Engineering and Environment University of Salford Salford United Kingdom Department of Electrical and Computer Engineering Lebanese American University Byblos Lebanon
Cyber-physical systems (CPS) and the Internet of Things (IoT) technologies link urban systems through networks and improve the delivery of quality services to residents. To enhance municipality services, information a... 详细信息
来源: 评论
Hybrid Water Quality Prediction With Multimodal Low-Rank Fusion and Localized Attention
收藏 引用
IEEE Internet of Things Journal 2025年 第12期12卷 21158-21169页
作者: Bi, Jing Li, Yibo Yuan, Haitao Wang, Mengyuan Wang, Ziqi Zhang, Jia Zhou, Mengchu Beijing University of Technology College of Computer Science Beijing Laboratory of Smart Environmental Protection Beijing100124 China Beihang University School of Automation Science and Electrical Engineering Beijing100191 China Beihang University School of Energy and Power Engineering Beijing100191 China Southern Methodist University Department of Computer Science DallasTX75206 United States New Jersey Institute of Technology Department of Electrical and Computer Engineering NewarkNJ07102 United States
Water quality prediction methods forecast the short- or long-term trends of its changes, providing proactive advice for preventing and controlling water pollution. Existing water quality prediction methods typically f... 详细信息
来源: 评论
SELF-Clustering Graph Transformer Approach to Model Resting State Functional Brain Activity  22
SELF-Clustering Graph Transformer Approach to Model Resting ...
收藏 引用
22nd IEEE International Symposium on Biomedical Imaging, ISBI 2025
作者: Thapaliya, Bishal Akbas, Esra Sapkota, Ram Ray, Bhaskar Calhoun, Vince Liu, Jingyu Georgia State University Department of Computer Science Atlanta United States Tri-Institutional Center for Translational Research in Neuroimaging and Data Science United States School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta United States
Resting-state functional magnetic resonance imaging (rs-fMRI) offers valuable insights into the human brain's functional organization and is a powerful tool for investigating the relationship between brain functio... 详细信息
来源: 评论