Deep ensemble learning models that combine multiple independent deep learning models with multi-layer processing architectures have proven to be effective techniques for improving the accuracy and robustness of deep l...
详细信息
There are numerous agricultural products in the world, and chili is among the most important ones due to its role in adding spice to food, particularly in Indonesia. Consequently, diseases affecting chili plants can l...
详细信息
Recommender systems are playing a significant role in modern society to alleviate the information/choice overload problem, since Internet users may feel hard to identify the most favorite items or products from millio...
详细信息
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection m...
详细信息
The evolution of bone marrow morphology is necessary in Acute Mye-loid Leukemia(AML)*** takes an enormous number of times to ana-lyze with the standardization and inter-observer ***,we proposed a novel AML detection model using a Deep Convolutional Neural Network(D-CNN).The proposed Faster R-CNN(Faster Region-Based CNN)models are trained with Morphological *** proposed Faster R-CNN model is trained using the augmented *** overcoming the Imbalanced data problem,data augmentation techniques are *** Faster R-CNN performance was com-pared with existing transfer learning *** results show that the Faster R-CNN performance was significant than other *** number of images in each class is *** example,the Neutrophil(segmented)class consists of 8,486 images,and Lymphocyte(atypical)class consists of eleven *** dataset is used to train the CNN for single-cell morphology classifi*** proposed work implies the high-class performance server called Nvidia Tesla V100 GPU(Graphics processing unit).
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models t...
详细信息
When data privacy is imposed as a necessity,Federated learning(FL)emerges as a relevant artificial intelligence field for developing machine learning(ML)models in a distributed and decentralized *** allows ML models to be trained on local devices without any need for centralized data transfer,thereby reducing both the exposure of sensitive data and the possibility of data interception by malicious third *** paradigm has gained momentum in the last few years,spurred by the plethora of real-world applications that have leveraged its ability to improve the efficiency of distributed learning and to accommodate numerous participants with their data *** virtue of FL,models can be learned from all such distributed data sources while preserving data *** aim of this paper is to provide a practical tutorial on FL,including a short methodology and a systematic analysis of existing software ***,our tutorial provides exemplary cases of study from three complementary perspectives:i)Foundations of FL,describing the main components of FL,from key elements to FL categories;ii)Implementation guidelines and exemplary cases of study,by systematically examining the functionalities provided by existing software frameworks for FL deployment,devising a methodology to design a FL scenario,and providing exemplary cases of study with source code for different ML approaches;and iii)Trends,shortly reviewing a non-exhaustive list of research directions that are under active investigation in the current FL *** ultimate purpose of this work is to establish itself as a referential work for researchers,developers,and data scientists willing to explore the capabilities of FL in practical applications.
In medical question-answering, traditional knowledge triples often fail due to superfluous data and their inability to capture complex relationships between symptoms and treatments across diseases. This limits models&...
详细信息
Business Email Compromise (BEC) is a sophisticated and increasingly prevalent form of cyber fraud that targets businesses and individuals to gain financial benefits and access sensitive data. BEC fraud involves variou...
详细信息
Edge computing has gained widespread attention in cloud computing due to the increasing demands of AIoT applications and the evolution of edge architectures. One prevalent application in this domain is neural network ...
详细信息
Accurate energy consumption forecasting is crucial for reducing operational costs, achieving net-zero carbon emissions, and ensuring sustainable buildings and cities of the future. Despite the frequent use of Artifici...
详细信息
Accurate energy consumption forecasting is crucial for reducing operational costs, achieving net-zero carbon emissions, and ensuring sustainable buildings and cities of the future. Despite the frequent use of Artificial Intelligence (AI) algorithms for learning energy consumption patterns and predictions in Building science, relying solely on these techniques for energy demand prediction addresses only a fraction of the challenge. A drift in energy usage can lead to inaccuracies in these AI models and subsequently to poor decision-making and interventions. While drift detection techniques have been reported, a reliable and robust approach capable of explaining identified discrepancies with actionable insights has not been discussed in extant literature. Hence, this paper presents an Artificial Intelligence framework for energy consumption forecasting with explainable drift detection, aimed at addressing these challenges. The proposed framework is composed of energy embeddings, an optimized dimensional model integrated within a data warehouse, and scalable cloud implementation for effective drift detection with explainability capability. The framework is empirically evaluated in the real-world setting of a multi-campus, mixed-use tertiary education setting in Victoria, Australia. The results of these experiments highlight its capabilities in detecting concept drift, adapting forecast predictions, and providing an interpretation of the changes using energy embeddings.
For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but faul...
详细信息
For achieving Energy-Efficiency in wireless sensor networks(WSNs),different schemes have been proposed which focuses only on reducing the energy consumption.A shortest path determines for the Base Station(BS),but fault tolerance and energy balancing gives equal importance for improving the network *** saving energy in WSNs,clustering is considered as one of the effective methods for Wireless Sensor *** of the excessive overload,more energy consumed by cluster heads(CHs)in a cluster based WSN to receive and aggregate the information from member sensor nodes and it leads to *** increasing the WSNs’lifetime,the CHs selection has played a key role in energy consumption for sensor *** Energy Efficient Unequal Fault Tolerant Clustering Approach(EEUFTC)is proposed for reducing the energy utilization through the intelligent methods like Particle Swarm Optimization(PSO).In this approach,an optimal Master Cluster Head(MCH)-Master data Aggregator(MDA),selection method is proposed which uses the fitness values and they evaluate based on the PSO for two optimal nodes in each cluster to act as Master data Aggregator(MDA),and Master Cluster *** data from the cluster members collected by the chosen MCH exclusively and the MDA is used for collected data reception from MCH transmits to the ***,the MCH overhead *** the heavy communication of data,overhead controls using the scheduling of Energy-Efficient Time Division Multiple Access(EE-TDMA).To describe the proposed method superiority based on various performance metrics,simulation and results are compared to the existing methods.
暂无评论