With the increasing traffic congestion problems in metropolises, traffic prediction plays an essential role in intelligent traffic systems. Notably, various deep learning models, especially graph neural networks (GNNs...
详细信息
Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient t...
详细信息
Network updates have become increasingly prevalent since the broad adoption of software-defined networks(SDNs)in data *** TCP designs,including cutting-edge TCP variants DCTCP,CUBIC,and BBR,however,are not resilient to network updates that provoke flow *** this paper,we first demonstrate that popular TCP implementations perform inadequately in the presence of frequent and inconsistent network updates,because inconsistent and frequent network updates result in out-of-order packets and packet drops induced via transitory congestion and lead to serious performance *** look into the causes and propose a network update-friendly TCP(NUFTCP),which is an extension of the DCTCP variant,as a *** are used to assess the proposed *** findings reveal that NUFTCP can more effectively manage the problems of out-of-order packets and packet drops triggered in network updates,and it outperforms DCTCP considerably.
With the rapid development and widespread application of information, computer, and communication technologies, Cyber-Physical-Social Systems (CPSS) have gained increasing importance and attention. To enable intellige...
详细信息
The drug traceability model is used for ensuring drug quality and its safety for customers in the medical supply chain. The healthcare supply chain is a complex network, which is susceptible to failures and leakage of...
详细信息
Hybrid memory systems composed of dynamic random access memory(DRAM)and Non-volatile memory(NVM)often exploit page migration technologies to fully take the advantages of different memory *** previous proposals usually...
详细信息
Hybrid memory systems composed of dynamic random access memory(DRAM)and Non-volatile memory(NVM)often exploit page migration technologies to fully take the advantages of different memory *** previous proposals usually migrate data at a granularity of 4 KB pages,and thus waste memory bandwidth and DRAM *** this paper,we propose Mocha,a non-hierarchical architecture that organizes DRAM and NVM in a flat address space physically,but manages them in a cache/memory *** the commercial NVM device-Intel Optane DC Persistent Memory Modules(DCPMM)actually access the physical media at a granularity of 256 bytes(an Optane block),we manage the DRAM cache at the 256-byte size to adapt to this feature of *** design not only enables fine-grained data migration and management for the DRAM cache,but also avoids write amplification for Intel Optane *** also create an Indirect Address Cache(IAC)in Hybrid Memory Controller(HMC)and propose a reverse address mapping table in the DRAM to speed up address translation and cache ***,we exploit a utility-based caching mechanism to filter cold blocks in the NVM,and further improve the efficiency of the DRAM *** implement Mocha in an architectural *** results show that Mocha can improve application performance by 8.2%on average(up to 24.6%),reduce 6.9%energy consumption and 25.9%data migration traffic on average,compared with a typical hybrid memory architecture-HSCC.
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is har...
详细信息
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee *** deadly disease is hard to control because wind,rain,and insects carry *** researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest *** the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate *** overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate *** proposed methodology selects CBD image datasets through four different stages for training and *** to train a model on datasets of coffee berries,with each image labeled as healthy or *** themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed *** of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions *** inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of *** evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is *** involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its *** comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
Anomaly detection(AD)in time series data is widely applied across various industries for monitoring and security applications,emerging as a key research focus within the field of deep *** many methods based on differe...
详细信息
Anomaly detection(AD)in time series data is widely applied across various industries for monitoring and security applications,emerging as a key research focus within the field of deep *** many methods based on different normality assumptions performwell in specific scenarios,they often neglected the overall normality *** feature extraction methods incorporate pre-training processes but they may not be suitable for time series anomaly detection,leading to decreased ***,real-world time series samples are rarely free from noise,making them susceptible to outliers,which further impacts detection *** address these challenges,we propose a novel anomaly detection method called Robust One-Class Classification Detection(ROC).This approach utilizes an autoencoder(AE)to learn features while constraining the context vectors fromthe AE within a sufficiently small hypersphere,akin to One-Class Classification(OC)*** simultaneously optimizing two hypothetical objective functions,ROC captures various aspects of *** categorize the input raw time series into clean and outlier sequences,reducing the impact of outliers on compressed feature *** results on public datasets indicate that our approach outperforms existing baselinemethods and substantially improves model robustness.
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such ser...
详细信息
The widespread availability of GPS has opened up a whole new market that provides a plethora of location-based ***-based social networks have become very popular as they provide end users like us with several such services utilizing GPS through our ***,when users utilize these services,they inevitably expose personal information such as their ID and sensitive location to the *** to untrustworthy servers and malicious attackers with colossal background knowledge,users'personal information is at risk on these ***,many privacy-preserving solutions for protecting trajectories have significantly decreased utility after *** have come up with a new trajectory privacy protection solution that contraposes the area of interest for ***,Staying Points Detection Method based on Temporal-Spatial Restrictions(SPDM-TSR)is an interest area mining method based on temporal-spatial restrictions,which can clearly distinguish between staying and moving ***,our privacy protection mechanism focuses on the user's areas of interest rather than the entire ***,our proposed mechanism does not rely on third-party service providers and the attackers'background knowledge *** test our models on real datasets,and the results indicate that our proposed algorithm can provide a high standard privacy guarantee as well as data availability.
Emotion Recognition is one field that is taking the world by storm in this current age. Multimodal emotion recognition has shown promising results however, previous studies shows that recognition using speech is a fie...
详细信息
Federated learning(FL)is an emerging privacy-preserving distributed computing paradigm,enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’private ...
详细信息
Federated learning(FL)is an emerging privacy-preserving distributed computing paradigm,enabling numerous clients to collaboratively train machine learning models without the necessity of transmitting clients’private datasets to the central *** most existing research where the local datasets of clients are assumed to be unchanged over time throughout the whole FL process,our study addresses such scenarios in this paper where clients’datasets need to be updated periodically,and the server can incentivize clients to employ as fresh as possible datasets for local model *** primary objective is to design a client selection strategy to minimize the loss of the global model for FL loss within a constrained *** this end,we introduce the concept of“Age of Information”(AoI)to quantitatively assess the freshness of local datasets and conduct a theoretical analysis of the convergence bound in our AoI-aware FL *** on the convergence bound,we further formulate our problem as a restless multi-armed bandit(RMAB)***,we relax the RMAB problem and apply the Lagrangian Dual approach to decouple it into multiple ***,we propose a Whittle’s Index Based Client Selection(WICS)algorithm to determine the set of selected *** addition,comprehensive simulations substantiate that the proposed algorithm can effectively reduce training loss and enhance the learning accuracy compared with some state-of-the-art methods.
暂无评论