咨询与建议

限定检索结果

文献类型

  • 317 篇 会议
  • 303 篇 期刊文献

馆藏范围

  • 620 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 385 篇 工学
    • 291 篇 计算机科学与技术...
    • 251 篇 软件工程
    • 85 篇 信息与通信工程
    • 67 篇 生物工程
    • 64 篇 电气工程
    • 54 篇 控制科学与工程
    • 46 篇 生物医学工程(可授...
    • 43 篇 光学工程
    • 27 篇 电子科学与技术(可...
    • 21 篇 网络空间安全
    • 20 篇 安全科学与工程
    • 17 篇 机械工程
    • 17 篇 动力工程及工程热...
    • 16 篇 化学工程与技术
    • 15 篇 土木工程
    • 14 篇 仪器科学与技术
  • 215 篇 理学
    • 100 篇 数学
    • 76 篇 生物学
    • 49 篇 物理学
    • 39 篇 统计学(可授理学、...
    • 19 篇 化学
    • 18 篇 系统科学
  • 129 篇 管理学
    • 86 篇 管理科学与工程(可...
    • 49 篇 图书情报与档案管...
    • 40 篇 工商管理
  • 57 篇 医学
    • 50 篇 临床医学
    • 42 篇 基础医学(可授医学...
    • 32 篇 公共卫生与预防医...
    • 23 篇 药学(可授医学、理...
  • 16 篇 法学
    • 16 篇 社会学
  • 12 篇 经济学
  • 11 篇 农学
  • 8 篇 教育学
  • 1 篇 文学
  • 1 篇 军事学

主题

  • 35 篇 accuracy
  • 32 篇 real-time system...
  • 30 篇 deep learning
  • 25 篇 training
  • 23 篇 machine learning
  • 21 篇 feature extracti...
  • 19 篇 predictive model...
  • 18 篇 adaptation model...
  • 18 篇 convolutional ne...
  • 15 篇 internet of thin...
  • 15 篇 artificial intel...
  • 14 篇 optimization
  • 14 篇 computational mo...
  • 13 篇 heuristic algori...
  • 12 篇 data models
  • 11 篇 cloud computing
  • 9 篇 contrastive lear...
  • 9 篇 semantics
  • 9 篇 security
  • 9 篇 prediction algor...

机构

  • 26 篇 national enginee...
  • 22 篇 college of compu...
  • 21 篇 university of ch...
  • 19 篇 college of compu...
  • 17 篇 shenzhen institu...
  • 12 篇 department of co...
  • 12 篇 artificial intel...
  • 10 篇 srm institute of...
  • 10 篇 school of comput...
  • 8 篇 department of co...
  • 8 篇 guangdong key la...
  • 8 篇 department of bi...
  • 7 篇 computer vision ...
  • 7 篇 srm institute of...
  • 7 篇 artificial intel...
  • 6 篇 university insti...
  • 6 篇 department of ar...
  • 6 篇 national institu...
  • 6 篇 institute of art...
  • 6 篇 school of artifi...

作者

  • 19 篇 shen linlin
  • 15 篇 pant millie
  • 14 篇 tao dacheng
  • 10 篇 jagjit singh dha...
  • 10 篇 kuldeep singh ka...
  • 9 篇 dhatterwal jagji...
  • 9 篇 mani deepak chou...
  • 9 篇 zhang jing
  • 9 篇 kaswan kuldeep s...
  • 8 篇 choudhry mani de...
  • 8 篇 gao can
  • 8 篇 akshya j.
  • 7 篇 ishwarya m.v.
  • 7 篇 wang jiacheng
  • 6 篇 niyato dusit
  • 6 篇 sun geng
  • 6 篇 r. geetha
  • 6 篇 m. sundarrajan
  • 6 篇 leung victor c.m...
  • 6 篇 du bo

语言

  • 555 篇 英文
  • 65 篇 其他
  • 1 篇 中文
检索条件"机构=Data Science and Artificial Intelligence Creative Computing Institute"
620 条 记 录,以下是41-50 订阅
排序:
MOVE: Effective and Harmless Ownership Verification via Embedded External Features
收藏 引用
IEEE Transactions on Pattern Analysis and Machine intelligence 2025年 第6期47卷 4734-4751页
作者: Yiming Li Linghui Zhu Xiaojun Jia Yang Bai Yong Jiang Shu-Tao Xia Xiaochun Cao Kui Ren State Key Laboratory of Blockchain and Data Security Zhejiang University Hangzhou China Tsinghua Shenzhen International Graduate School Tsinghua University Shenzhen China Nanyang Technological University Singapore College of Computing and Data Science Nanyang Technological University Singapore ByteDance Inc San Jose CA USA Research Center of Artificial Intelligence Peng Cheng Laboratory Shenzhen China School of Cyber Science and Technology Sun Yat-sen University Shenzhen China Hangzhou High-Tech Zone Binjiang Institute of Blockchain and Data Security Hangzhou China
Currently, deep neural networks (DNNs) are widely adopted in different applications. Despite its commercial values, training a well-performing DNN is resource-consuming. Accordingly, the well-trained model is valuable... 详细信息
来源: 评论
Towards Sample-specific Backdoor Attack with Clean Labels via Attribute Trigger
收藏 引用
IEEE Transactions on Dependable and Secure computing 2025年
作者: Zhu, Mingyan Li, Yiming Guo, Junfeng Wei, Tao Xia, Shu-Tao Qin, Zhan Tsinghua University Tsinghua Shenzhen International Graduate School Shenzhen518055 China Nanyang Technological University College of Computing and Data Science 639798 Singapore Zhejiang University State Key Laboratory of Blockchain and Data Security Hangzhou310007 China University of Maryland Department of Computer Science College ParkMD20742 United States Ant Group Hangzhou310023 China Peng Cheng Laboratory Research Center of Artificial Intelligence Shenzhen518000 China Institute of Blockchain and Data Security Hangzhou310053 China
Currently, sample-specific backdoor attacks (SSBAs) are the most advanced and malicious methods since they can easily circumvent most of the current backdoor defenses. In this paper, we reveal that SSBAs are not suffi... 详细信息
来源: 评论
Unified Domain Adaptive Semantic Segmentation
收藏 引用
IEEE Transactions on Pattern Analysis and Machine intelligence 2025年
作者: Zhang, Zhe Wu, Gaochang Zhang, Jing Zhu, Xiatian Tao, Dacheng Chai, Tianyou Northeastern University State Key Laboratory of Synthetical Automation for Process Industries Shenyang China Wuhan University School of Computer Science China University of Surrey Surrey Institute for People-Centred Artificial Intelligence Centre for Vision Speech and Signal Processing Guildford United Kingdom Nanyang Technological University College of Computing & Data Science Singapore
Unsupervised Domain Adaptive Semantic Segmentation (UDA-SS) aims to transfer the supervision from a labeled source domain to an unlabeled and shifted target domain. The majority of existing UDA-SS works typically cons... 详细信息
来源: 评论
Air Pollution Monitoring By Integrating Local and Global Information in Self-Adaptive Multiscale Transform Domain
收藏 引用
IEEE Transactions on Multimedia 2025年
作者: Gu, Ke Liu, Yuchen Liu, Hongyan Liu, Bo Qiao, Junfei Lin, Weisi Zhang, Wenjun Beijing University of Technology School of Information Science and Technology Engineering Research Center of Intelligent Perception and Autonomous Control of Ministry of Education Beijing Laboratory of Smart Environmental Protection Beijing Key Laboratory of Computational Intelligence and Intelligent System Beijing Artificial Intelligence Institute Beijing100124 China Massey University School of Mathematical and Computational Sciences New Zealand Nanyang Technological University College of Computing and Data Science Singapore Shanghai Jiao Tong University Institute of Image Communication and Information Processing Shanghai China
As the deadliest form of pollution, air pollution had a prolonged severe damage to the human health and life safety of nearly 99% of the world's population. Facing to the problem that billions of tons of pollutant... 详细信息
来源: 评论
Restoring Missing Slices of Serial Section Electron Microscopy Using Diffusion Models  2nd
Restoring Missing Slices of Serial Section Electron Microsco...
收藏 引用
2nd International Conference on Applied intelligence, ICAI 2024
作者: Yang, Hongyu Zhang, Ruobing Zhang, Qinhu Ningbo Institute of Digital Twin Eastern Institute of Technology No. 568 Tongxin Road Zhuangshi Street Zhejiang Ningbo315201 China Big Data and Intelligent Computing Research Center Guangxi Academy of Science Nanning530007 China University of Science and Technology of China No. 96 Jinzhai Road Anhui Baohe District Hefei230022 China Hefei Comprehensive National Science Center Institute of Artificial Intelligence Hefei China
Serial section electron microscopy (ssEM), an advanced three-dimensional imaging technique, has played a crucial role in studying neuronal connections and microstructures of the brain. However, imperfect sample prepar... 详细信息
来源: 评论
High-order diversity feature learning for pedestrian attribute recognition
收藏 引用
Neural Networks 2025年 188卷 107463页
作者: Wu, Junyi Huang, Yan Gao, Min Niu, Yuzhen Chen, Yuzhong Wu, Qiang Key Laboratory of Network Computing and Intelligent Information Processing College of Computer and Data Science Fuzhou University Fujian Fuzhou China Australian Artificial Intelligence Institute University of Technology Sydney NSW Australia Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information College of Physics and Information Engineering Fuzhou University Fujian Fuzhou China School of Electrical and Data Engineering University of Technology Sydney NSW Australia
Pedestrian attribute recognition (PAR) involves accurately identifying multiple attributes present in pedestrian images. There are two main approaches for PAR: part-based method and attention-based method. The former ... 详细信息
来源: 评论
Dual prototypes contrastive learning based semi-supervised segmentation method for intelligent medical applications
收藏 引用
Engineering Applications of artificial intelligence 2025年 154卷
作者: Yue, Tianai Xu, Rongtao Wu, Jingqian Yang, Wenjie Du, Shide Wang, Changwei Johns Hopkins University Baltimore21218 United States Jinan250014 China Shandong Provincial Key Laboratory of Computing Power Internet and Service Computing Shandong Fundamental Research Center for Computer Science Jinan250014 China State Key Laboratory of Multimodal Artificial Intelligence Systems Institute of Automation Chinese Academy of Sciences Beijing100190 China The University of Hong Kong 999077 Hong Kong College of Computer and Big Data Fuzhou University Fuzhou350108 China
In medical intelligence applications, the labeling of medical data is crucial and expensive, so it becomes urgent to explore labeling-efficient ways to train applications. Semi-supervised techniques for medical image ... 详细信息
来源: 评论
Spiking Neural Networks for Temporal Processing: Status Quo and Future Prospects
arXiv
收藏 引用
arXiv 2025年
作者: Ma, Chenxiang Chen, Xinyi Li, Yanchen Yang, Qu Wu, Yujie Li, Guoqi Pan, Gang Tang, Huajin Tan, Kay Chen Wu, Jibin Department of Data Science and Artificial Intelligence The Hong Kong Polytechnic University Hong Kong Department of Computing The Hong Kong Polytechnic University Hong Kong Department of Electrical and Computer Engineering National University of Singapore 119077 Singapore Institute of Automation Chinese Academy of Sciences Beijing100045 China State Key Laboratory of Brain-Machine Intelligence College of Computer Science and Technology MOE Frontier Science Center for Brain Science and Brain-Machine Integration Zhejiang University Hangzhou310027 China
Temporal processing is fundamental for both biological and artificial intelligence systems, as it enables the comprehension of dynamic environments and facilitates timely responses. Spiking Neural Networks (SNNs) exce... 详细信息
来源: 评论
Multi-Agent Systems for Autonomous IoT Network Management Using Distributed Reinforcement Learning
Multi-Agent Systems for Autonomous IoT Network Management Us...
收藏 引用
International Symposium on Advanced computing and Communication (ISACC)
作者: Neelamegam G Rajaram Venkatesan Ramya SR R.S. Ramya Akshya. J M. Sundarrajan Mani Deepak Choudhry Department of Computer Science and Engineering VSB College of Engineering and Technology Coimbatore Tamil Nadu India Department of Artificial Intelligence and Data Science Builders Engineering College Tirupur Tamil Nadu India Department of Computer Science and Engineering Dr NGP Institute of Technology Coimbatore Tamil Nadu India Department of Computer Science and Engineering Sri Ramakrishna Engineering College Coimbatore Tamil Nadu India Department of Computational Intelligence SRM Institute of Science and Technology Chennai Tamil Nadu India Department of Networking and Communications SRM Institute of Science and Technology Chennai Tamil Nadu India Department of Computing Technologies SRM Institute of Science and Technology Chennai Tamil Nadu India
The ever-growing complexity of IoT networks ignited by their wide scale adoption in applications such as smart cities, the industrial automation, and health care, compelled to develop sophisticated yet resource effici... 详细信息
来源: 评论
AoI-Sensitive data Forwarding with Distributed Beamforming in UAV-Assisted IoT
arXiv
收藏 引用
arXiv 2025年
作者: Lang, Zifan Liu, Guixia Sun, Geng Li, Jiahui Sun, Zemin Wang, Jiacheng Leung, Victor C.M. College of Computer Science and Technology Jilin University Changchun130012 China College of Computing and Data Science Nanyang Technological University Singapore639798 Singapore Artificial Intelligence Research Institute Shenzhen MSU-BIT University Shenzhen518115 China Department of Electrical and Computer Engineering The University of British Columbia VancouverV6T 1Z4 Canada
This paper proposes a UAV-assisted forwarding system based on distributed beamforming to enhance age of information (AoI) in Internet of Things (IoT). Specifically, UAVs collect and relay data between sensor nodes (SN... 详细信息
来源: 评论