Scientific research in many fields is increasingly a collaborative effort across multiple institutions and disciplines. Scientific researchers need not only an effective system to manage their data, results, and the e...
详细信息
The objectives of Human Engineering (HE) are generally viewed as increasing human performance, reducing human error, enhancing personnel and equipment safety, and reducing training and related personnel costs. There a...
详细信息
The objectives of Human Engineering (HE) are generally viewed as increasing human performance, reducing human error, enhancing personnel and equipment safety, and reducing training and related personnel costs. There are other benefits that are thoroughly consistent with the direction of the Navy of the future, chief among these is reduction of required numbers of personnel to operate and maintain Navy ships. The Naval Research Advisory Committee (NRAC) report on Man-Machine Technology in the Navy estimated that one of the benefits from increased application of man-machine technology to Navy ship design is personnel reduction as well as improving system availability, effectiveness, and safety The objective of this paper is to discuss aspects of the human engineering design of ships and systems that affect manning requirements, and impact human-performance and safety The paper will also discuss how the application of human engineering leads to improved performance, and crew safety, and reduced workload, all of which influence manning levels. Finally, the paper presents a discussion of tools and case studies of good human engineering design practices which reduce manning.
The Signal Processing Instructional Facility (SPIF Lab) is an experiment in using in interactive multimedia for teaching concepts related to linear systems theory and signal processing. The goals of the SPIF lab are t...
The Signal Processing Instructional Facility (SPIF Lab) is an experiment in using in interactive multimedia for teaching concepts related to linear systems theory and signal processing. The goals of the SPIF lab are to augment, enhance, and interconnect sophomore, junior, and senior level courses with the common thread of linear systems and transforms by unifying the experimentation medium. In this fashion, physical phenomenon is returned to the forefront of engineering education. The laboratory features powerful Mathematica Notebooks (a form of hypertext) and interactive applications that use dedicated DSP microprocessors.
作者:
LINDGREN, JRSOLITARIO, WAMOORE, APSTREIFF, MAJohn R. Lindgren
Jr:. is vice president for engineering at Ingalls Shipbuilding Inc. a Division of Litton Industries in Pascagoula Miss. He joined Ingalls in 1958 and has held various positions in the Engineering Division and participated in the design of numerous merchant ships drill rigs submarines and surface combatants and auxiliary support ships. Mr. Lindgren is a 1958 graduate of the University of Southwest Louisiana. His degree is in mechanical engineering and he is also a licensed professional engineer. William A. Solitario:is the director of advanced technology at Ingalls Shipbuilding
Inc. in Pascagoula Miss. He received his B.S. degree in chemical engineering from the City University of New York and has 28 years experience in marine engineering and design. His current responsibilities include the direction of Ingalls' IRAD programs and several Navy-funded R&D programs to improve ship's performance and reduce ship's operating costs. He is a member of the Society of Naval Architects and Marine Engineers and past chairman of the Gulf Section East Area. Arnold P. Moore:is the director
design engineering at Ingalls Shipbuilding where he is responsible for all new construction design and engineering activities. Prior to promotion to his current position Mr. Moore served as chief naval architect at Ingalls. He has 24 years experience in ship design construction and repair. Mr. Moore holds the professional degree of ocean engineer as well as a master's degree in naval architecture and marine engineering from MIT. He also earned a bachelor's degree in naval science from the U.S. Naval Academy and is a registered professional engineer. Mr. Moore served as an engineering duty officer in the U.S. Navy and is currently a captain in the Naval Reserve. He is a past chairman of the Gulf Section of the Society of Naval Architects and Marine Engineers and a member of the American Society of Naval Engineers and Sigma Xi. Michel A. Streiff:is the manager of CAD/CAM applications at Ingalls Shipbuilding
Inc. His
The SA'AR-5 Corvette Program is the first major warship construction to be entirely accomplished using a 3-dimensional, interference checked computer based design. This paper discusses the organization and approac...
详细信息
The SA'AR-5 Corvette Program is the first major warship construction to be entirely accomplished using a 3-dimensional, interference checked computer based design. This paper discusses the organization and approach used to create the design models which form the basis for interference checking as well as the source of extracted production data. The design or product model is the nucleus of the computerdata base that defines the configuration of the entire ship. The data base includes geometry, weight, and material, as well as production control data. The ability of the computer to link such diverse information is the key to maintaining configuration control during the course of the design and construction. The ease with which formatted manufacturing data (both N.C. fabrication and installation) can be extracted enables the preparation of detailed packages containing the desired geometry as well as the associated material and sequencing data, thus assuring the producibility of the design. The SA'AR-5 design is CAD/CAM's state of the art in U.S. shipbuilding.
作者:
DETOLLA, JPFLEMING, JRJoseph DeTolla:is a ship systems engineer in the Ship Systems Engineering Division
SEA 56D5 at the Naval Sea Systems Command. His career with the Navy started in 1965 at the Philadelphia Naval Shipyard Design Division. In 1971 he transferred to the Naval Ship Engineering Center. He has held positions as a fluid systems design engineer and auxiliary systems design integration engineer. Mr. DeTolla has worked extensively in the synthesis and analysis of total energy systems notably the design development of the FFG-7 class waste heat recovery system. He is NA VSEA's machinery group computer supported design project coordinator and is managing the development of a machinery systems data base load forecasting algorithms and design analysis computer programs. Mr. DeTolla has a bachelor of science degree in mechanical engineering from Drexel University and a master of engineering administration degree from George Washington University. He is a registered professional engineer in the District of Columbia and has written several technical papers on waste heat recovery and energy conservation. Jeffrey Fleming:is a senior project engineer in the Energy R&D Office at the David Taylor Naval Ship R&D Center. In his current position as group leader for the future fleet energy conservation portion of the Navy's energy R&D program
he is responsible for the identification and development of advanced components and subsystems which will lead to reductions in the fossil fuel consumption of future ships. Over the past several years he has also directed the development and application of total energy computer analysis techniques for the assessment of conventional and advanced shipboard machinery concepts. Mr. Fleming is a 1971 graduate electrical engineer of Virginia Polytechnic Institute and received his MS in electrical engineering from Johns Hopkins University in 1975. Mr. Fleming has authored various technical publications and was the recipient of the Severn Technical Society's “Best Technical Paper of the Year” award in 1
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and...
In support of the Navy's efforts to improve the energy usage of future ships and thereby to reduce fleet operating costs, a large scale computer model has been developed by the David Taylor Naval Ship Research and Development Center (DTNSRDC) to analyze the performance of shipboard energy systems for applications other than nuclear or oil-fired steam propulsion plants. This paper discusses the applications and utility of this computer program as a performance analysis tool for design of ship machinery systems. The program is a simulation model that performs a complete thermodynamic analysis of a user-specified energy system. It offers considerable flexibility in analyzing a variety of propulsion, electrical, and auxiliary plant configurations through a component building block structure. Component subroutines that model the performance of shipboard equipment such as engines, boilers, generators, and compressors are available from the program library. Component subroutines are selected and linked in the program to model the desired machinery plant functional configurations. The operation of the defined shipboard energy system may then be simulated over a user-specified scenario of temperature, time, and load profiles. The program output furnishes information on component operating characteristics and fuel demands, which allows evaluation of the total system performance.
作者:
DOUGHERTY, JOHN J.U.S.N.
Ret JOHN J. DOUGHERTY
is Director of Personnel and Contract Administration for The Dikewood Corporation a group of computer-oriented consulting scientists research engineers and data processors in University Research Park Albuquerque New Mexico. Mr. Dougherty attended Stevens Institute of Technology from 1940 to 1942. A 1945 Annapolis graduate and a 1948 faculty member there he received the degree of Master of Science in Engineering Electronics from the Naval Postgraduate School in 1953. He is a Professional Electrical Engineer registered in New Mexico and the District of Columbia a Senior Member of the Institute of Electrical and Electronics Engineers Technical Group on Engineering Management a member of ASNE and an Associate Fellow of the American Institute of Aeronautics and Astronautics. In 1962 he received the Navy Bureau of Ships Research and Development Award for Scientific Achievement. He is the author of some twenty technical and management papers and from 1963 to 1965 as a Navy Commander was Assistant Director of Communications Satellite Programs Headquarters NASA Washington D.C.
暂无评论