咨询与建议

限定检索结果

文献类型

  • 301 篇 期刊文献
  • 174 篇 会议

馆藏范围

  • 475 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 304 篇 工学
    • 224 篇 计算机科学与技术...
    • 183 篇 软件工程
    • 53 篇 生物工程
    • 52 篇 信息与通信工程
    • 44 篇 光学工程
    • 43 篇 生物医学工程(可授...
    • 37 篇 电气工程
    • 31 篇 电子科学与技术(可...
    • 23 篇 控制科学与工程
    • 21 篇 化学工程与技术
    • 11 篇 安全科学与工程
    • 10 篇 机械工程
    • 9 篇 航空宇航科学与技...
    • 9 篇 网络空间安全
  • 195 篇 理学
    • 88 篇 数学
    • 62 篇 物理学
    • 62 篇 生物学
    • 28 篇 化学
    • 26 篇 统计学(可授理学、...
    • 10 篇 系统科学
    • 9 篇 大气科学
    • 9 篇 地球物理学
  • 96 篇 管理学
    • 51 篇 图书情报与档案管...
    • 48 篇 管理科学与工程(可...
    • 27 篇 工商管理
  • 38 篇 医学
    • 32 篇 临床医学
    • 28 篇 基础医学(可授医学...
    • 14 篇 药学(可授医学、理...
    • 13 篇 公共卫生与预防医...
  • 22 篇 法学
    • 21 篇 社会学
  • 8 篇 经济学
  • 8 篇 农学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 15 篇 machine learning
  • 13 篇 deep learning
  • 13 篇 decision making
  • 10 篇 accuracy
  • 9 篇 semantics
  • 9 篇 feature extracti...
  • 7 篇 computational mo...
  • 7 篇 data models
  • 7 篇 training
  • 6 篇 image segmentati...
  • 6 篇 anomaly detectio...
  • 6 篇 visualization
  • 6 篇 benchmarking
  • 6 篇 forecasting
  • 5 篇 optimization
  • 5 篇 knowledge graph
  • 5 篇 analytical model...
  • 5 篇 embeddings
  • 5 篇 clustering algor...
  • 5 篇 federated learni...

机构

  • 26 篇 alibaba group
  • 21 篇 college of compu...
  • 11 篇 school of data a...
  • 10 篇 data science ins...
  • 10 篇 active asteroids...
  • 10 篇 data and web sci...
  • 9 篇 planetary scienc...
  • 9 篇 astronomical soc...
  • 9 篇 royal astronomic...
  • 9 篇 raw data speaks ...
  • 9 篇 institute of ast...
  • 9 篇 lsst interdiscip...
  • 8 篇 department of br...
  • 8 篇 data science res...
  • 7 篇 biomedia group d...
  • 7 篇 wyant college of...
  • 6 篇 shandong provinc...
  • 6 篇 department of co...
  • 6 篇 shandong branch ...
  • 6 篇 university of ch...

作者

  • 21 篇 cha meeyoung
  • 11 篇 chen chen
  • 11 篇 park sungwon
  • 11 篇 rueckert daniel
  • 10 篇 bai wenjia
  • 9 篇 tiffany shaw-dia...
  • 9 篇 brian l. goodwin
  • 9 篇 scott s. sheppar...
  • 9 篇 colin orion chan...
  • 9 篇 henry h. hsieh
  • 9 篇 milton k. d. bos...
  • 9 篇 al lamperti
  • 9 篇 josé a. da silva...
  • 9 篇 william j. oldro...
  • 9 篇 ivan a. terentev
  • 9 篇 mark jesus mendo...
  • 9 篇 jay k. kueny
  • 9 篇 kennedy a. farre...
  • 9 篇 lima gabriel
  • 9 篇 jarod a. despain

语言

  • 449 篇 英文
  • 26 篇 其他
  • 1 篇 斯洛文尼亚文
检索条件"机构=Data Science and Computing Group"
475 条 记 录,以下是111-120 订阅
排序:
Beyond Radio: Het-Medium Networks and Its Cross-Medium Communication Paradigms for 6G
收藏 引用
IEEE Network 2025年
作者: Wu, Mingming Han, Yufeng Xiao, Yue Gao, Yulan Li, Shiying Niyato, Dusit Karagiannidis, George K. University of Electronic Science and Technology of China National Key Laboratory of Wireless Communications Chengdu611731 China QianYuan National Laboratory Hangzhou310024 China KTH Royal Institute of Technology Division of Information Science and Engineering Stockholm100 44 Sweden Nanyang Technological University College of Computing and Data Science Singapore639798 Singapore Group Electrical and Computer Engineering Dept Thessaloniki54 124 Greece
In the evolving landscape of communication technologies, the integration of Heterogeneous Medium Networks (HetMNets) has emerged as a pivotal progression, signaling a departure from traditional, radio-centric paradigm... 详细信息
来源: 评论
Training Physics- Informed Neural Networks via Multi-Task Optimization for Traffic Density Prediction
Training Physics- Informed Neural Networks via Multi-Task Op...
收藏 引用
International Joint Conference on Neural Networks (IJCNN)
作者: Bo Wang A. K. Qin Sajjad Shafiei Hussein Dia Adriana-Simona Mihaita Hanna Grzybowska Dept. of Computing Technologies Swinburne University of Technology Melbourne Australia Dept. of Civil and Construction Engineering Swinburne University of Technology Melbourne Australia Data Science Institute University of Technology Sydney Sydney Australia Simulation Group Data 61|CSIRO Sydney Australia
Physics-informed neural networks (PINN s) are a newly emerging research frontier in machine learning, which incorporate certain physical laws that govern a given data set, e.g., those described by partial differential...
来源: 评论
Training Physics-Informed Neural Networks via Multi-Task Optimization for Traffic Density Prediction
arXiv
收藏 引用
arXiv 2023年
作者: Wang, Bo Qin, A.K. Shafiei, Sajjad Dia, Hussein Mihaita, Adriana-Simona Grzybowska, Hanna Dept. of Computing Technologies Swinburne University of Technology Melbourne Australia Dept. of Civil and Construction Engineering Swinburne University of Technology Melbourne Australia Data Science Institute University of Technology Sydney Sydney Australia Simulation Group Data 61 CSIRO Sydney Australia
Physics-informed neural networks (PINNs) are a newly emerging research frontier in machine learning, which incorporate certain physical laws that govern a given data set, e.g., those described by partial differential ... 详细信息
来源: 评论
Generating High-Resolution Regional Precipitation Using Conditional Diffusion Model
arXiv
收藏 引用
arXiv 2023年
作者: Shidqi, Naufal Jeong, Chaeyoon Park, Sungwon Zeller, Elke Nellikkattil, Arjun Babu Singh, Karandeep School of Computing KAIST Daejeon Korea Republic of Data Science Group IBS Daejeon Korea Republic of Department of Climate System PNU Busan Korea Republic of Center for Climate Physics IBS Busan Korea Republic of
Climate downscaling is a crucial technique within climate research, serving to project low-resolution (LR) climate data to higher resolutions (HR). Previous research has demonstrated the effectiveness of deep learning... 详细信息
来源: 评论
SPA: a graph spectral alignment perspective for domain adaptation  23
SPA: a graph spectral alignment perspective for domain adapt...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Zhiqing Xiao Haobo Wang Ying Jin Lei Feng Gang Chen Fei Huang Junbo Zhao College of Computer Science and Technology Zhejiang University and Key Lab of Intelligent Computing based Big Data of Zhejiang Province Zhejiang University School of Software Technology Zhejiang University and Key Lab of Intelligent Computing based Big Data of Zhejiang Province Zhejiang University CUHK-SenseTime Joint Lab The Chinese University of Hong Kong School of Computer Science and Engineering Nanyang Technological University Alibaba Group
Unsupervised domain adaptation (UDA) is a pivotal form in machine learning to extend the in-domain model to the distinctive target domains where the data distributions differ. Most prior works focus on capturing the i...
来源: 评论
Neural Classification of Terrestrial Biomes
Neural Classification of Terrestrial Biomes
收藏 引用
International Conference on Big data and Smart computing (BIGCOMP)
作者: Vyacheslav Shen Dong-Kyum Kim Elke Zeller Meeyoung Cha School of Computing KAIST Daejeon South Korea Data Science Group IBS Daejeon South Korea Center for Climate Physics IBS Busan South Korea Department of Climate System PNU Busan South Korea
Predicting vegetation changes under climate change is crucial because it will alter the distribution of different plants and have repercussions for ecosystems. To detect changes in vegetation, we employ biome classifi... 详细信息
来源: 评论
Self-supervised learning for climate downscaling
Self-supervised learning for climate downscaling
收藏 引用
International Conference on Big data and Smart computing (BIGCOMP)
作者: Karandeep Singh Chaeyoon Jeong Sungwon Park Arjun N Babur Elke Zeller Meeyoung Cha Data Science Group IBS Daejeon South Korea School of Computing KAIST Daejeon South Korea Center for Climate Physics IBS Busan South Korea Department of Climate System PNU Busan South Korea
Earth system models (ESM) are computer models that quantitatively simulate the Earth’s climate system. These models are the basis of modern research on climate change and its effects on our planet. Advances in comput... 详细信息
来源: 评论
Classification of Cybercrime Indicators in Open Social data  7th
Classification of Cybercrime Indicators in Open Social Data
收藏 引用
7th Annual International Conference on Information Management and Big data, SIMBig 2020
作者: Ullah, Ihsan Lane, Caoilfhionn Buda, Teodora Sandra Drury, Brett Mellotte, Marc Assem, Haytham Madden, Michael G. Computer Science National University of Ireland Galway Galway Ireland Insight Center for Data Analytics National University of Ireland Galway Galway Ireland Cognitive Computing Group Innovation Exchange IBM Dublin Ireland
Posting information on social media platforms is a popular activity through which personal and confidential information can leak into the public domain. Consequently, social media can contain information that provides... 详细信息
来源: 评论
Elsa: Energy-based learning for semi-supervised anomaly detection
arXiv
收藏 引用
arXiv 2021年
作者: Han, Sungwon Song, Hyeonho Lee, Seungeon Park, Sungwon Cha, Meeyoung School of Computing KAIST Korea Republic of Data Science Group IBS Korea Republic of
Anomaly detection aims at identifying deviant instances from the normal data distribution. Many advances have been made in the field, including the innovative use of unsupervised contrastive learning. However, existin... 详细信息
来源: 评论
Forte: An Interactive Visual Analytic Tool for Trust-Augmented Net Load Forecasting
arXiv
收藏 引用
arXiv 2023年
作者: Bhattacharjee, Kaustav Kundu, Soumya Chakraborty, Indrasis Dasgupta, Aritra Department of Data Science New Jersey Institute of Technology United States Optimization and Control Group Pacific Northwest National Laboratory United States Center for Applied Scientific Computing Lawrence Livermore National Laboratory United States
Accurate net load forecasting is vital for energy planning, aiding decisions on trade and load distribution. However, assessing the performance of forecasting models across diverse input variables, like temperature an... 详细信息
来源: 评论