咨询与建议

限定检索结果

文献类型

  • 1,356 篇 期刊文献
  • 933 篇 会议
  • 19 册 图书

馆藏范围

  • 2,308 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,585 篇 工学
    • 1,110 篇 计算机科学与技术...
    • 935 篇 软件工程
    • 315 篇 信息与通信工程
    • 277 篇 生物工程
    • 235 篇 生物医学工程(可授...
    • 209 篇 光学工程
    • 153 篇 电气工程
    • 145 篇 控制科学与工程
    • 128 篇 电子科学与技术(可...
    • 101 篇 化学工程与技术
    • 79 篇 机械工程
    • 59 篇 仪器科学与技术
    • 53 篇 材料科学与工程(可...
    • 51 篇 动力工程及工程热...
    • 44 篇 交通运输工程
    • 43 篇 安全科学与工程
  • 903 篇 理学
    • 393 篇 数学
    • 307 篇 生物学
    • 248 篇 物理学
    • 141 篇 统计学(可授理学、...
    • 92 篇 化学
    • 58 篇 系统科学
  • 399 篇 管理学
    • 212 篇 图书情报与档案管...
    • 194 篇 管理科学与工程(可...
    • 89 篇 工商管理
  • 197 篇 医学
    • 179 篇 临床医学
    • 154 篇 基础医学(可授医学...
    • 105 篇 药学(可授医学、理...
    • 62 篇 公共卫生与预防医...
  • 73 篇 法学
    • 64 篇 社会学
  • 36 篇 经济学
  • 21 篇 农学
  • 17 篇 教育学
  • 5 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 63 篇 semantics
  • 47 篇 deep learning
  • 44 篇 machine learning
  • 44 篇 training
  • 42 篇 feature extracti...
  • 36 篇 computational mo...
  • 32 篇 deep neural netw...
  • 31 篇 task analysis
  • 29 篇 predictive model...
  • 29 篇 forecasting
  • 27 篇 image segmentati...
  • 27 篇 accuracy
  • 23 篇 data models
  • 22 篇 object detection
  • 22 篇 optimization
  • 22 篇 graph neural net...
  • 21 篇 recommender syst...
  • 20 篇 data mining
  • 18 篇 neural networks
  • 18 篇 visualization

机构

  • 102 篇 national enginee...
  • 54 篇 research center ...
  • 52 篇 school of comput...
  • 41 篇 zhejiang lab
  • 40 篇 school of cyber ...
  • 32 篇 national enginee...
  • 32 篇 university of ch...
  • 30 篇 college of compu...
  • 28 篇 hubei key labora...
  • 28 篇 hubei engineerin...
  • 27 篇 services computi...
  • 26 篇 huazhong univers...
  • 24 篇 tencent ai lab
  • 23 篇 department of co...
  • 22 篇 cluster and grid...
  • 21 篇 shenzhen researc...
  • 20 篇 school of inform...
  • 20 篇 pazhou lab
  • 19 篇 sjtu-pinghu inst...
  • 18 篇 peng cheng labor...

作者

  • 108 篇 hai jin
  • 100 篇 jin hai
  • 39 篇 xiaofei liao
  • 28 篇 liu jun
  • 28 篇 chen yen-wei
  • 25 篇 lin lanfen
  • 23 篇 hu shengshan
  • 21 篇 liu jing
  • 20 篇 haikun liu
  • 19 篇 long zheng
  • 18 篇 chen jianping
  • 18 篇 zhou linjie
  • 18 篇 liao xiaofei
  • 17 篇 zou deqing
  • 17 篇 li haizhou
  • 16 篇 v.i.belousov
  • 16 篇 j.beringer
  • 16 篇 lu liangjun
  • 15 篇 zhang leo yu
  • 15 篇 deqing zou

语言

  • 1,772 篇 英文
  • 523 篇 其他
  • 16 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Data Science and Engineering Lab"
2308 条 记 录,以下是1791-1800 订阅
排序:
Dynamic class learning approach for smart CBIR  6th
Dynamic class learning approach for smart CBIR
收藏 引用
6th National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics, NCVPRIPG 2017
作者: Pahariya, Girraj Ravindran, Balaraman Das, Sukhendu Department of Computer Science and Engineering IIT Madras Chennai India Robert Bosch Centre for Data Science and AI IIT Madras Chennai India Visualization and Perception Lab IIT Madras Chennai India
Smart Content Based Image Retrieval (CBIR) helps to simultaneously localize and recognize all object(s) present in a scene, for image retrieval task. The major drawbacks in such kind of system are: (a) overhead for ad... 详细信息
来源: 评论
Harmonized-Multinational qEEG norms (HarMNqEEG)
收藏 引用
NEUROIMAGE 2022年 256卷 119190-119190页
作者: Li, Min Wang, Ying Lopez-Naranjo, Carlos Hu, Shiang Reyes, Ronaldo Cesar Garcia Paz-Linares, Deirel Areces-Gonzalez, Ariosky Hamid, Aini Ismafairus Abd Evans, Alan C. Savostyanov, Alexander N. Calzada-Reyes, Ana Villringer, Arno Tobon-Quintero, Carlos A. Garcia-Agustin, Daysi Yao, Dezhong Dong, Li Aubert-Vazquez, Eduardo Reza, Faruque Razzaq, Fuleah Abdul Omar, Hazim Abdullah, Jafri Malin Galler, Janina R. Ochoa-Gomez, John F. Prichep, Leslie S. Galan-Garcia, Lidice Morales-Chacon, Lilia Valdes-Sosa, Mitchell J. Trondle, Marius Zulkifly, Mohd Faizal Mohd Rahman, Muhammad Riddha Bin Abdul Milakhina, Natalya S. Langer, Nicolas Rudych, Pavel Koenig, Thomas Virues-Alba, Trinidad A. Lei, Xu Bringas-Vega, Maria L. Bosch-Bayard, Jorge F. Valdes-Sosa, Pedro Antonio [a]The Clinical Hospital of Chengdu Brain Science Institute MOE Key Lab for Neuroinformation School of Life Science and Technology University of Electronic Science and Technology of China Chengdu China [b]Cuban Center for Neurocience La Habana Cuba [c]McGill Centre for Integrative Neuroscience Ludmer Centre for Neuroinformatics and Mental Health Montreal Neurological Institute Canada [d]Department of Neurosciences School of Medical Sciences Universiti Sains Malaysia Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [e]Brain and Behaviour Cluster School of Medical Sciences Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [f]Hospital Universiti Sains Malaysia Universiti Sains Malaysia Health Campus Kota Bharu Kelantan 16150 Malaysia [g]Humanitarian Institute Novosibirsk State University Novosibirsk 630090 Russia [h]Laboratory of Psychophysiology of Individual Differences Federal State Budgetary Scientific Institution Scientific Research Institute of Neurosciences and Medicine Novosibirsk 630117 Russia [i]Laboratory of Psychological Genetics at the Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences Novosibirsk 630090 Russia [j]University of Pinar del Río “Hermanos Saiz Montes de Oca” Pinar del Río Cuba [k]Department of Neurology Max Planck Institute for Human Cognitive and Brain Sciences Leipzig Germany [l]Department of Cognitive Neurology University Hospital Leipzig Leipzig Germany [m]Center for Stroke Research Charité-Universitätsmedizin Berlin Berlin Germany [n]Grupo Neuropsicología y Conducta - GRUNECO Faculty of Medicine Universidad de Antioquia Colombia [o]Research Department Institución Prestadora de Servicios de Salud IPS Universitaria Colombia [p]The Cuban center aging longevity and health Havana Cuba [q]Research Unit of NeuroInformation Chinese Academy of Medical Sciences Chengdu 2019RU035 China [r]School of Electrical Engineering Zhengzhou University Zhengzhou 4500
This paper extends frequency domain quantitative electroencephalography (qEEG) methods pursuing higher sensitivity to detect Brain Developmental Disorders. Prior qEEG work lacked integration of cross-spectral informat... 详细信息
来源: 评论
Adjusting Matching Algorithm to Adapt to Workload Fluctuations in Content-based Publish/Subscribe Systems
Adjusting Matching Algorithm to Adapt to Workload Fluctuatio...
收藏 引用
IEEE Annual Joint Conference: INFOCOM, IEEE Computer and Communications Societies
作者: Shiyou Qian Weichao Mao Jian Cao Frédéric Le Mouël Minglu Li Shanghai Institute for Advanced Communication and Data Science Shanghai Jiao Tong University Shanghai China CITI-INRIA Lab INSA-Lyon University of Lyon Department of Computer Science and Engineering Shanghai Jiao Tong University Shanghai China
When facing fluctuating workloads, can the performance of matching algorithms in a content-based publish/subscribe system be adjusted to adapt to the workloads? In this paper, we explore the idea of endowing matching ... 详细信息
来源: 评论
A SURVEY OF AUTOMATIC GENERATION OF SOURCE CODE COMMENTS: ALGORITHMS AND TECHNIQUES
arXiv
收藏 引用
arXiv 2019年
作者: Song, Xiaotao Sun, Hailong Wang, Xu Yan, Jiafei School of Software Taiyuan University of Technology China SKLSDE Lab School of Computer Science and Engineering Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University Beijing China
As an integral part of source code files, code comments help improve program readability and comprehension. However, developers sometimes do not comment on their program code adequately due to the incurred extra effor... 详细信息
来源: 评论
Gene Selection for scRNA-Seq data Based on Information Gain and Fruit Fly Optimization Algorithm
Gene Selection for scRNA-Seq Data Based on Information Gain ...
收藏 引用
International Conference on Computational Intelligence and Security
作者: Jie Zhang Junhong Feng Xiani Yang School of Computer Science and Engineering Guangxi Colleges and Universities Key Lab of Complex System Optimization and Big Data Processing Yulin Normal University Yulin P.R. China School of Computer Science and Engineering Yulin Normal University Yulin P.R. China
As there exist many redundant genes and inferior genes in single-cell RNA-seq data, we introduce information gain (IG) and fruit fly optimization algorithm (FOA) to select the superior genes and improve the cluster pe... 详细信息
来源: 评论
COVID-19 mRNA Vaccine Degradation Prediction Using LR and LGBM Algorithms
收藏 引用
Journal of Physics: Conference Series 2021年 第1期1997卷
作者: Soon Hwai Ing Azian Azamimi Abdullah Nor Hazlyna Harun Shigehiko Kanaya Faculty of Electronic Engineering Technology Universiti Malaysia Perlis (UniMAP) Perlis Malaysia. Medical Devices and Life Sciences Cluster Sport Engineering Research Centre Centre of Excellence (SERC) Universiti Malaysia Perlis (UniMAP) Perlis Malaysia. Data Science Research Lab School of Computing School of Computing Universiti Utara Malaysia Sintok Kedah. Computational Systems Biology Lab Graduate School of Information Science Nara Institute of Science and Technology Ikoma Nara Japan.
The threatening Coronavirus which was assigned as the global pandemic concussed not only the public health but society, economy and every walks of life. Some measurements are taken to stifle the spread and one of the ...
来源: 评论
Towards Multi-Pose Guided Virtual Try-On Network
Towards Multi-Pose Guided Virtual Try-On Network
收藏 引用
International Conference on Computer Vision (ICCV)
作者: Haoye Dong Xiaodan Liang Xiaohui Shen Bochao Wang Hanjiang Lai Jia Zhu Zhiting Hu Jian Yin School of Data and Computer Science Sun Yat-sen University Guangdong Key Laboratory of Big Data Analysis and Processing Guangzhou P.R.China School of Intelligent Systems Engineering Sun Yat-sen University ByteDance AI Lab. School of Computer Science South China Normal University Guangzhou Key Laboratory of Big Data and Intelligent Education Carnegie Mellon University
Virtual try-on systems under arbitrary human poses have significant application potential, yet also raise extensive challenges, such as self-occlusions, heavy misalignment among different poses, and complex clothes te... 详细信息
来源: 评论
The Multi-modality Cell Segmentation Challenge: Towards Universal Solutions
arXiv
收藏 引用
arXiv 2023年
作者: Ma, Jun Xie, Ronald Ayyadhury, Shamini Ge, Cheng Gupta, Anubha Gupta, Ritu Gu, Song Zhang, Yao Lee, Gihun Kim, Joonkee Lou, Wei Li, Haofeng Upschulte, Eric Dickscheid, Timo de Almeida, José Guilherme Wang, Yixin Han, Lin Yang, Xin labagnara, Marco Gligorovski, Vojislav Scheder, Maxime Rahi, Sahand Jamal Kempster, Carly Pollitt, Alice Espinosa, Leon Mignot, Tâm Middeke, Jan Moritz Eckardt, Jan-Niklas Li, Wangkai Li, Zhaoyang Cai, Xiaochen Bai, Bizhe Greenwald, Noah F. Van Valen, David Weisbart, Erin Cimini, Beth A. Cheung, Trevor Brück, Oscar Bader, Gary D. Wang, Bo Peter Munk Cardiac Centre University Health Network TorontoON Canada Department of Laboratory Medicine and Pathobiology University of Toronto TorontoON Canada Vector Institute TorontoON Canada Department of Molecular Genetics University of Toronto TorontoON Canada Donnelly Centre University of Toronto TorontoON Canada Princess Margaret Cancer Centre University Health Network TorontoON Canada School of Medicine and Pharmacy Ocean University of China Qingdao China New Delhi India Laboratory Oncology Dr. BRA-IRCH All India Institute of Medical Sciences New Delhi India Department of Image Reconstruction Nanjing Anke Medical Technology Co. Ltd. Nanjing China Shanghai Artificial Intelligence Laboratory Shanghai China Graduate School of AI KAIST Seoul Korea Republic of Shenzhen Research Institute of Big Data Shenzhen China Shenzhen China Helmholtz AI Research Center Jülich Jülich Germany Faculty of Mathematics and Natural Sciences Institute of Computer Science Heinrich Heine University Düsseldorf Düsseldorf Germany Hinxton United Kingdom Champalimaud Foundation - Centre for the Unknown Lisbon Portugal Department of Bioengineering Stanford University Palo AltoCA United States Tandon School of Engineering New York University New YorkNY United States School of Biomedical Engineering Health Science Center Shenzhen University Shenzhen China Lausanne Switzerland School of Biological Sciences University of Reading Reading United Kingdom Laboratoire de Chimie Bactérienne CNRS Université Aix Marseille UMR Institut de Microbiologie de la Méditerranée Marseille France Department of Internal Medicine I University Hospital Dresden Technical University Dresden Dresden Germany Else Kroener Fresenius Center for Digital Health Technical University Dresden Dresden Germany Department of Automation University of Science and Technology of China Hefei China Institute of Advanced Technology University of Science and Technology of China Hefei Chi
Cell segmentation is a critical step for quantitative single-cell analysis in microscopy images. Existing cell segmentation methods are often tailored to specific modalities or require manual interventions to specify ... 详细信息
来源: 评论
Constrained Multi-scale Dense Connections for Accurate Biomedical Image Segmentation
Constrained Multi-scale Dense Connections for Accurate Biome...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Jiawei Zhang Yanchun Zhang Shanfeng Zhu Xiaowei Xu Shanghai key Laboratory of Data Science School of Computer Science Fudan University Shanghai China Cyberspace Institute of Advanced Technology Guangzhou University Guangzhou China College of Engineering and Science Victoria University Melbourne Australia ISTBI and Shanghai Institute of Artificial Intelligence Algorithms Fudan University Shanghai China Nanjing University Institute of Artificial Intelligence Biomedicine Nanjing China Shanghai Key Lab of Intelligent Information Processing Fudan University Shanghai China Guangdong Provincial People’s Hospital Guangdong Cardiovascular Institute Guangzhou China
Biomedical image segmentation plays a critical role in clinical diagnosis and medical intervention. Recently, a variety of deep neural networks have boosted the biomedical image segmentation performance with a large m... 详细信息
来源: 评论
Multiple residual dense networks for reconfigurable intelligent surfaces cascaded channel estimation
arXiv
收藏 引用
arXiv 2021年
作者: Jin, Yu Zhang, Jiayi Huang, Chongwen Yang, Liang Xiao, Huahua Ai, Bo Wang, Zhiqin The School of Electronic and Information Engineering Beijing Jiaotong University Beijing100044 China The Frontiers Science Center for Smart High-speed Railway System Beijing Jiaotong University Beijing100044 China Zhejiang Provincial Key Lab of Information Processing Communication and Networking Zhejiang University Hangzhou310007 China College of Computer Science and Electronic Engineering Hunan University Changsha410082 China ZTE Corporation State Key Laboratory of Mobile Network Mobile Multimedia Technology Shenzhen518057 China State Key Laboratory of Rail Traffic Control and Safety Beijing Jiaotong University Beijing100044 China Henan Joint International Research Laboratory of Intelligent Networking and Data Analysis Zhengzhou University Zhengzhou450001 China Research Center of Networks and Communications Peng Cheng Laboratory Shenzhen518055 China China Academy of Information and Communications Technology Beijing100191 China
Reconfigurable intelligent surface (RIS) constitutes an essential and promising paradigm that relies programmable wireless environment and provides capability for space-intensive communications, due to the use of low-... 详细信息
来源: 评论