咨询与建议

限定检索结果

文献类型

  • 1,335 篇 期刊文献
  • 936 篇 会议
  • 19 册 图书

馆藏范围

  • 2,290 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,578 篇 工学
    • 1,116 篇 计算机科学与技术...
    • 933 篇 软件工程
    • 311 篇 信息与通信工程
    • 277 篇 生物工程
    • 233 篇 生物医学工程(可授...
    • 206 篇 光学工程
    • 149 篇 电气工程
    • 149 篇 控制科学与工程
    • 128 篇 电子科学与技术(可...
    • 101 篇 化学工程与技术
    • 78 篇 机械工程
    • 59 篇 仪器科学与技术
    • 54 篇 材料科学与工程(可...
    • 53 篇 动力工程及工程热...
    • 45 篇 交通运输工程
    • 42 篇 安全科学与工程
  • 899 篇 理学
    • 389 篇 数学
    • 305 篇 生物学
    • 250 篇 物理学
    • 141 篇 统计学(可授理学、...
    • 91 篇 化学
    • 61 篇 系统科学
  • 402 篇 管理学
    • 212 篇 图书情报与档案管...
    • 198 篇 管理科学与工程(可...
    • 93 篇 工商管理
  • 196 篇 医学
    • 174 篇 临床医学
    • 155 篇 基础医学(可授医学...
    • 104 篇 药学(可授医学、理...
    • 59 篇 公共卫生与预防医...
  • 75 篇 法学
    • 66 篇 社会学
  • 37 篇 经济学
  • 25 篇 农学
  • 16 篇 教育学
  • 5 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 62 篇 semantics
  • 43 篇 deep learning
  • 43 篇 training
  • 42 篇 feature extracti...
  • 42 篇 machine learning
  • 36 篇 computational mo...
  • 33 篇 deep neural netw...
  • 31 篇 task analysis
  • 29 篇 forecasting
  • 28 篇 predictive model...
  • 28 篇 accuracy
  • 26 篇 image segmentati...
  • 23 篇 object detection
  • 23 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 recommender syst...
  • 21 篇 optimization
  • 19 篇 data mining
  • 18 篇 neural networks
  • 18 篇 visualization

机构

  • 103 篇 national enginee...
  • 55 篇 research center ...
  • 51 篇 school of comput...
  • 43 篇 zhejiang lab
  • 41 篇 school of cyber ...
  • 32 篇 national enginee...
  • 31 篇 university of ch...
  • 31 篇 college of compu...
  • 28 篇 hubei key labora...
  • 28 篇 hubei engineerin...
  • 27 篇 services computi...
  • 26 篇 huazhong univers...
  • 24 篇 tencent ai lab
  • 22 篇 department of co...
  • 22 篇 cluster and grid...
  • 21 篇 sjtu-pinghu inst...
  • 21 篇 shenzhen researc...
  • 20 篇 school of inform...
  • 20 篇 pazhou lab
  • 18 篇 columbia univers...

作者

  • 109 篇 hai jin
  • 102 篇 jin hai
  • 40 篇 xiaofei liao
  • 29 篇 chen yen-wei
  • 27 篇 liu jun
  • 25 篇 lin lanfen
  • 23 篇 hu shengshan
  • 22 篇 liao xiaofei
  • 21 篇 liu jing
  • 20 篇 haikun liu
  • 19 篇 long zheng
  • 19 篇 zhou linjie
  • 18 篇 chen jianping
  • 17 篇 zou deqing
  • 17 篇 li haizhou
  • 17 篇 lu liangjun
  • 16 篇 v.i.belousov
  • 16 篇 j.beringer
  • 15 篇 zhang leo yu
  • 15 篇 deqing zou

语言

  • 2,064 篇 英文
  • 210 篇 其他
  • 15 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Data Science and Engineering Lab"
2290 条 记 录,以下是251-260 订阅
排序:
AegonKV: a high bandwidth, low tail latency, and low storage cost KV-separated LSM store with SmartSSD-based GC offloading  25
AegonKV: a high bandwidth, low tail latency, and low storage...
收藏 引用
Proceedings of the 23rd USENIX Conference on File and Storage Technologies
作者: Zhuohui Duan Hao Feng Haikun Liu Xiaofei Liao Hai Jin Bangyu Li National Engineering Research Center for Big Data Technology and System Service Computing Technology and System Lab/Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology China
The key-value separation is renowned for its significant mitigation of the write amplification inherent in traditional LSM trees. However, KV separation potentially increases performance overhead in the management of ...
来源: 评论
Breaking Barriers in Physical-World Adversarial Examples: Improving Robustness and Transferability via Robust Feature  39
Breaking Barriers in Physical-World Adversarial Examples: Im...
收藏 引用
39th Annual AAAI Conference on Artificial Intelligence, AAAI 2025
作者: Wang, Yichen Chou, Yuxuan Zhou, Ziqi Zhang, Hangtao Wan, Wei Hu, Shengshan Li, Minghui National Engineering Research Center for Big Data Technology and System China Services Computing Technology and System Lab China Cluster and Grid Computing Lab China Hubei Engineering Research Center on Big Data Security China Hubei Key Laboratory of Distributed System Security China School of Cyber Science and Engineering Huazhong University of Science and Technology China School of Computer Science and Technology Huazhong University of Science and Technology China School of Software Engineering Huazhong University of Science and Technology China
As deep neural networks (DNNs) are widely applied in the physical world, many researches are focusing on physical-world adversarial examples (PAEs), which introduce perturbations to inputs and cause the model's in... 详细信息
来源: 评论
Why Does Little Robustness Help? A Further Step Towards Understanding Adversarial Transferability
Why Does Little Robustness Help? A Further Step Towards Unde...
收藏 引用
IEEE Symposium on Security and Privacy
作者: Yechao Zhang Shengshan Hu Leo Yu Zhang Junyu Shi Minghui Li Xiaogeng Liu Wei Wan Hai Jin National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Hubei Engineering Research Center on Big Data Security Hubei Key Laboratory of Distributed System Security School of Cyber Science and Engineering Huazhong University of Science and Technology School of Information and Communication Technology Griffith University School of Software Engineering Huazhong University of Science and Technology Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology
Adversarial examples for deep neural networks (DNNs) are transferable: examples that successfully fool one white-box surrogate model can also deceive other black-box models with different architectures. Although a bun... 详细信息
来源: 评论
Logic-Aware Knowledge Graph Reasoning for Structural Sparsity under Large Language Model Supervision  25
Logic-Aware Knowledge Graph Reasoning for Structural Sparsit...
收藏 引用
34th ACM Web Conference, WWW 2025
作者: Pan, Yudai Hong, Jiajie Zhao, Tianzhe Song, Lingyun Liu, Jun Shang, Xuequn School of Computer Science Northwest Polytechnical University Shaanxi Xi’an China Key Laboratory of Big Data Storage and Management Northwestern Polytechnical University Shaanxi Xi’an China School of Computer Science and Technology Xi’an Jiaotong University Shaanxi Xi’an China Research & Development Institute of Northwestern Polytechnical University in Shenzhen Shenzhen China National Engineering Lab for Big Data Analytics Xi’an Jiaotong University Shaanxi Xi’an China
Knowledge Graph (KG) reasoning aims to predict missing entities in incomplete triples, which requires adequate structural information to derive accurate embeddings. However, KGs in the real world are not as dense as t... 详细信息
来源: 评论
iSLAM: Imperative SLAM
arXiv
收藏 引用
arXiv 2023年
作者: Fu, Taimeng Su, Shaoshu Lu, Yiren Wang, Chen Lab Institute for Artificial Intelligence and Data Science Department of Computer Science and Engineering University at Buffalo NY14260 United States
Simultaneous Localization and Mapping (SLAM) stands as one of the critical challenges in robot navigation. A SLAM system often consists of a front-end component for motion estimation and a back-end system for eliminat... 详细信息
来源: 评论
The Power of Bamboo: On the Post-Compromise Security for Searchable Symmetric Encryption  30
The Power of Bamboo: On the Post-Compromise Security for Sea...
收藏 引用
30th Annual Network and Distributed System Security Symposium, NDSS 2023
作者: Chen, Tianyang Xu, Peng Picek, Stjepan Luo, Bo Susilo, Willy Jin, Hai Liang, Kaitai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab China Hubei Key Laboratory of Distributed System Security Hubei Engineering Research Center on Big Data Security School of Cyber Science and Engineering China Cluster and Grid Computing Lab School of Computer Science and Technology China Huazhong University of Science and Technology Wuhan430074 China Digital Security Group Radboud University Nijmegen Netherlands Department of EECS Institute of Information Sciences The University of Kansas LawrenceKS United States Institute of Cybersecurity and Cryptology School of Computing and Information Technology University of Wollongong WollongongNSW2522 Australia Faculty of Electrical Engineering Mathematics and Computer Science Delft University of Technology Delft2628 CD Netherlands
Dynamic searchable symmetric encryption (DSSE) enables users to delegate the keyword search over dynamically updated encrypted databases to an honest-but-curious server without losing keyword privacy. This paper studi...
来源: 评论
Machine Learning With data Assimilation and Uncertainty Quantification for Dynamical Systems:A Review
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第6期10卷 1361-1387页
作者: Sibo Cheng César Quilodrán-Casas Said Ouala Alban Farchi Che Liu Pierre Tandeo Ronan Fablet Didier Lucor Bertrand Iooss Julien Brajard Dunhui Xiao Tijana Janjic Weiping Ding Yike Guo Alberto Carrassi Marc Bocquet Rossella Arcucci Data Science Institute Department of ComputingImperial College LondonSW72AZ London Department of Earth Science and Engineering Imperial College LondonSW72AZ London Department of Computer Science and Engineering Hong Kong University of Science and TechnologyHong Kong 999077China the IMT Atlantique Lab-STICCUMR CNRS 6285France and OdysseyInria/IMTFrance.P.Tandeo is also with RIKEN Center for Computational ScienceKobeJapan the CEREA École des Ponts and EDF R&Dîle-de-FranceFrance the Laboratoire Interdisciplinaire des Sciences du Numérique CNRSParis-Saclay UniversityF-91403OrsayFrance the Electricitéde France(EDF) 78401 ChatouFranceInstitut de Mathématiques de Toulouse31062 ToulouseFrance and SINCLAIR AI LabSaclayFrance the Sorbonne University ParisFranceand also with Nansen Environmental and Remote Sensing Center(NERSC)BergenNorway the School of Mathematical Sciences Tongji UniversityShanghai 200092China the Mathematical Institute for Machine Learning and Data Science KU Eichstaett-IngolstadtBavariaGermany the School of Information Science and Technology Nantong UniversityNantong 226019China the Department of Physics and Astronomy“Augusto Righi” University of Bologna40124 BolognaItaly
data assimilation(DA)and uncertainty quantification(UQ)are extensively used in analysing and reducing error propagation in high-dimensional spatial-temporal *** applications span from computational fluid dynamics(CFD)... 详细信息
来源: 评论
Generalized-Extended-State-Observer and Equivalent-Input-Disturbance Methods for Active Disturbance Rejection: Deep Observation and Comparison
收藏 引用
IEEE/CAA Journal of Automatica Sinica 2023年 第4期10卷 957-968页
作者: Jinhua She Kou Miyamoto Qing-Long Han Min Wu Hiroshi Hashimoto Qing-Guo Wang School of Engineering Tokyo University of TechnologyHachiojiTokyo 192-0982Japan K.Miyamoto is with the Institute of Technology Shimizu CorporationKotoTokyo 135-0044Japan School of Science Computing and Engineering TechnologiesSwinburne University of TechnologyMelbourneVIC 3122Australia School of Automation China University of GeosciencesWuhan 430074 Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems Engineering Research Center of Intelligent Technology for Geo-Exploration Ministry of EducationWuhan 430074China School of Industrial Technology Advanced Institute of Industrial TechnologyTokyo 140-0011Japan Institute of Artificial Intelligence and Future Networks Beijing Normal UniversityZhuhai 519087 Guangdong Key Lab of AI and Multi-Modal Data Processing Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science BNUHKBU United International College Zhuhai 519087China
Active disturbance-rejection methods are effective in estimating and rejecting disturbances in both transient and steady-state *** paper presents a deep observation on and a comparison between two of those methods:the... 详细信息
来源: 评论
TCSloT: Text Guided 3D Context and Slope Aware Triple Network for Dental Implant Position Prediction
TCSloT: Text Guided 3D Context and Slope Aware Triple Networ...
收藏 引用
2023 IEEE International Conference on Bioinformatics and Biomedicine, BIBM 2023
作者: Yang, Xinquan Xie, Jinheng Li, Xuechen Li, Xuguang Shen, Linlin Deng, Yongqiang Shenzhen University College of Computer Science and Software Engineering Shenzhen China National University of Singapore Show Lab Singapore Shenzhen University National Engineering Laboratory for Big Data System Computing Technology Shenzhen China Shenzhen University General Hospital Department of Stomatology Shenzhen China
In implant prosthesis treatment, the surgical guide of implant is used to ensure accurate implantation. However, such design heavily relies on the manual location of the implant position. When deep neural network has ... 详细信息
来源: 评论
Sustainable Self-evolution Adversarial Training  24
Sustainable Self-evolution Adversarial Training
收藏 引用
32nd ACM International Conference on Multimedia, MM 2024
作者: Wang, Wenxuan Wang, Chenglei Qi, Huihui Ye, Menghao Qian, Xuelin Wang, Peng Zhang, Yanning School of Computer Science Northwestern Polytechnical University China Natl. Engineering Laboratory for Integrated Aero-Space-Ground-Ocean Big Data Application Technology Shaanxi Xi'an China School of Automation Northwestern Polytechnical University The BRain and Artificial INtelligence Lab Shaanxi Xi'an China
With the wide application of deep neural network models in various computer vision tasks, there has been a proliferation of adversarial example generation strategies aimed at deeply exploring model security. However, ... 详细信息
来源: 评论