咨询与建议

限定检索结果

文献类型

  • 1,335 篇 期刊文献
  • 936 篇 会议
  • 19 册 图书

馆藏范围

  • 2,290 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,578 篇 工学
    • 1,116 篇 计算机科学与技术...
    • 933 篇 软件工程
    • 311 篇 信息与通信工程
    • 277 篇 生物工程
    • 233 篇 生物医学工程(可授...
    • 206 篇 光学工程
    • 149 篇 电气工程
    • 149 篇 控制科学与工程
    • 128 篇 电子科学与技术(可...
    • 101 篇 化学工程与技术
    • 78 篇 机械工程
    • 59 篇 仪器科学与技术
    • 54 篇 材料科学与工程(可...
    • 53 篇 动力工程及工程热...
    • 45 篇 交通运输工程
    • 42 篇 安全科学与工程
  • 899 篇 理学
    • 389 篇 数学
    • 305 篇 生物学
    • 250 篇 物理学
    • 141 篇 统计学(可授理学、...
    • 91 篇 化学
    • 61 篇 系统科学
  • 402 篇 管理学
    • 212 篇 图书情报与档案管...
    • 198 篇 管理科学与工程(可...
    • 93 篇 工商管理
  • 196 篇 医学
    • 174 篇 临床医学
    • 155 篇 基础医学(可授医学...
    • 104 篇 药学(可授医学、理...
    • 59 篇 公共卫生与预防医...
  • 75 篇 法学
    • 66 篇 社会学
  • 37 篇 经济学
  • 25 篇 农学
  • 16 篇 教育学
  • 5 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 62 篇 semantics
  • 43 篇 deep learning
  • 43 篇 training
  • 42 篇 feature extracti...
  • 42 篇 machine learning
  • 36 篇 computational mo...
  • 33 篇 deep neural netw...
  • 31 篇 task analysis
  • 29 篇 forecasting
  • 28 篇 predictive model...
  • 28 篇 accuracy
  • 26 篇 image segmentati...
  • 23 篇 object detection
  • 23 篇 graph neural net...
  • 23 篇 data models
  • 22 篇 recommender syst...
  • 21 篇 optimization
  • 19 篇 data mining
  • 18 篇 neural networks
  • 18 篇 visualization

机构

  • 103 篇 national enginee...
  • 55 篇 research center ...
  • 51 篇 school of comput...
  • 43 篇 zhejiang lab
  • 41 篇 school of cyber ...
  • 32 篇 national enginee...
  • 31 篇 university of ch...
  • 31 篇 college of compu...
  • 28 篇 hubei key labora...
  • 28 篇 hubei engineerin...
  • 27 篇 services computi...
  • 26 篇 huazhong univers...
  • 24 篇 tencent ai lab
  • 22 篇 department of co...
  • 22 篇 cluster and grid...
  • 21 篇 sjtu-pinghu inst...
  • 21 篇 shenzhen researc...
  • 20 篇 school of inform...
  • 20 篇 pazhou lab
  • 18 篇 columbia univers...

作者

  • 109 篇 hai jin
  • 102 篇 jin hai
  • 40 篇 xiaofei liao
  • 29 篇 chen yen-wei
  • 27 篇 liu jun
  • 25 篇 lin lanfen
  • 23 篇 hu shengshan
  • 22 篇 liao xiaofei
  • 21 篇 liu jing
  • 20 篇 haikun liu
  • 19 篇 long zheng
  • 19 篇 zhou linjie
  • 18 篇 chen jianping
  • 17 篇 zou deqing
  • 17 篇 li haizhou
  • 17 篇 lu liangjun
  • 16 篇 v.i.belousov
  • 16 篇 j.beringer
  • 15 篇 zhang leo yu
  • 15 篇 deqing zou

语言

  • 2,064 篇 英文
  • 210 篇 其他
  • 15 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Data Science and Engineering Lab"
2290 条 记 录,以下是461-470 订阅
排序:
Auto-tuning numerical method for acoustic wave simulation using analytical solution
Auto-tuning numerical method for acoustic wave simulation us...
收藏 引用
Annual International Conference of the IEEE engineering in Medicine and Biology Society (EMBC)
作者: He Huang Zheng Li Changshan Han Guangwei Wu Zeyu Zhuang Jingsong Li Hongxiang Lin Research Center for Healthcare Data Science Zhejiang Lab Hangzhou China Engineering Research Center of EMR and Intelligent Expert System Ministry of Education College of Biomedical Engineering and Instrument Science Zhejiang University Hangzhou China
Numerical wavefield simulation such as commercial simulation software enables an optimal design of an ultrasound computed tomography (USCT) system for clinical purpose of before prototyping. Such simulator, not develo...
来源: 评论
Joint Participation Incentive and Network Pricing Design for Federated Learning  42
Joint Participation Incentive and Network Pricing Design for...
收藏 引用
42nd IEEE International Conference on Computer Communications, INFOCOM 2023
作者: Ding, Ningning Gao, Lin Huang, Jianwei Northwestern University Department of Electrical and Computer Engineering EvanstonIL60208 United States Shenzhen Research Institute of Big Data Shenzhen518172 China Harbin Institute of Technology Sch. of Electronics and Info. Eng. and the Guangdong Prov. Key Lab. of Aerosp. Commun. and Networking Technol. Shenzhen China The Chinese University of Hong Kong Shenzhen School of Science and Engineering Shenzhen Research Institute of Big Data Shenzhen518172 China
Federated learning protects users' data privacy though sharing users' local model parameters (instead of raw data) with a server. However, when massive users train a large machine learning model through federa... 详细信息
来源: 评论
Deep Learning and Shape-Driven Combined Approach for Breast Cancer Tumor Segmentation
Deep Learning and Shape-Driven Combined Approach for Breast ...
收藏 引用
International Conference on Advancements in Computational sciences (ICACS)
作者: Mudassar Ali Haoji Hu Tufail Muhammad Muhammad Ahsan Qureshi Tariq Mahmood College of Information Science and Electronic Engineering Zhejiang University Hangzhou China Department of Computer Science Air University Islamabad Pakistan Artificial Intelligence and Data Analytics Lab CCIS Prince Sultan University Riyadh Kingdom of Saudi Arabia.
Our aim is to enhance the performance of segmenting breast cancer from medical images by overcoming major challenges, including data insufficiency and complexity when training a model. Using the INbreast dataset, it p... 详细信息
来源: 评论
Towards Instruction-Tuned Verification for Improving Biomedical Information Extraction with Large Language Models
Towards Instruction-Tuned Verification for Improving Biomedi...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Jin Li Ruifan Yuan Yu Tian Jingsong Li School of Artificial Intelligence Nanjing University of Information Science and Technology Nanjing China College of Biomedical Engineering & Instrumental Science Zhejiang University Hangzhou China Zhejiang Lab Research Center for Data Hub and Security Hangzhou China
Biomedical information extraction, including tasks like Named Entity Recognition (NER) and Relationship Extraction (RE), plays a critical role in analyzing unstructured biomedical data, facilitating more accurate down... 详细信息
来源: 评论
Domain adaptation for large-vocabulary object detectors  24
Domain adaptation for large-vocabulary object detectors
收藏 引用
Proceedings of the 38th International Conference on Neural Information Processing Systems
作者: Kai Jiang Jiaxing Huang Weiying Xie Jie Lei Yunsong Li Ling Shao Shijian Lu State Key Laboratory of Integrated Services Networks Xidian University Xi'an China S-lab School of Computer Science and Engineering Nanyang Technological University School of Electrical and Data Engineering at the University of Technology Sydney UCAS-Terminus AI Lab University of Chinese Academy of Sciences China
Large-vocabulary object detectors (LVDs) aim to detect objects of many categories, which learn super objectness features and can locate objects accurately while applied to various downstream data. However, LVDs often ...
来源: 评论
UniSleepPos: Sleep Posture Identification System Utilizing Millimeter-wave Radar
UniSleepPos: Sleep Posture Identification System Utilizing M...
收藏 引用
IEEE International Conference on Bioinformatics and Biomedicine (BIBM)
作者: Kun Liu Min Li Chu He Xu Tian Junbin Mao Min Zeng Jin Liu Xinjiang Engineering Research Center of Big Data and Intelligent Software School of Software Xinjiang University Urumqi China Hunan Provincial Key Lab on Bioinformatics School of Computer Science and Engineering Central South University Changsha China
Sleep posture identification is crucial for accurately assessing sleep quality and diagnosing related diseases. In the realm of non-intrusive sleep monitoring, non-contact technologies are becoming increasingly mainst... 详细信息
来源: 评论
MacST: Multi-Accent Speech Synthesis via Text Transliteration for Accent Conversion
arXiv
收藏 引用
arXiv 2024年
作者: Inoue, Sho Wang, Shuai Wang, Wanxing Zhu, Pengcheng Bi, Mengxiao Li, Haizhou School of Data Science Shenzhen Research Institute of Big Data The Chinese University of Hong Kong CUHK-Shenzhen Shenzhen China Fuxi AI Lab NetEase Inc. Hangzhou China Department of Electrical and Computer Engineering National University of Singapore Singapore
In accented voice conversion or accent conversion, we seek to convert the accent in speech from one another while preserving speaker identity and semantic content. In this study, we formulate a novel method for creati... 详细信息
来源: 评论
Towards Model Resistant to Transferable Adversarial Examples via Trigger Activation
arXiv
收藏 引用
arXiv 2025年
作者: Yu, Yi Xia, Song Lin, Xun Kong, Chenqi Yang, Wenhan Lu, Shijian Tan, Yap-Peng Kot, Alex C. Lab Interdisciplinary Graduate Programme Nanyang Technological University Singapore PengCheng Laboratory Shenzhen China School of Electrical and Electronic Engineering Nanyang Technological University Singapore School of Computer Science and Engineering Beihang University Beijing China College of Computing and Data Science Nanyang Technological University Singapore
Adversarial examples, characterized by imperceptible perturbations, pose significant threats to deep neural networks by misleading their predictions. A critical aspect of these examples is their transferability, allow... 详细信息
来源: 评论
Electro-optical phase-locked loop for hybrid integrated external cavity laser
Electro-optical phase-locked loop for hybrid integrated exte...
收藏 引用
2023 Optical Fiber Communications Conference and Exhibition, OFC 2023
作者: Liu, Chuxin Guo, Yuyao Xu, Ruiyang Lu, Liangjun Chen, Jianping Zhou, Linjie Shanghai Jiao Tong University State Key Laboratory of Advanced Optical Communication Systems and Networks Shanghai Key Lab of Navigation and Location Services Shanghai Institute for Advanced Communication and Data Science Department of Electronic Engineering Shanghai200240 China SJTU-Pinghu Institute of Intelligent Optoelectronics Pinghu314200 China
We implement an analog EO-PLL for a III/V-Si3N4 hybrid integrated ECL to generate a highly-linear FMCW signal over multiple wavelengths. The ranging resolution is improved from 5 m to 35 cm for a 100-m target. © ... 详细信息
来源: 评论
data-efficient Deep Reinforcement Learning for Vehicle Trajectory Control
Data-efficient Deep Reinforcement Learning for Vehicle Traje...
收藏 引用
International Conference on Intelligent Transportation
作者: Bernd Frauenknecht Tobias Ehlgen Sebastian Trimpe Institute for Data Science in Mechanical Engineering (DSME) RWTH Aachen University Aachen Germany AI Lab Friedrichshafen ZF Friedrichshafen AG Friedrichshafen Germany
Advanced vehicle control is a fundamental building block in the development of autonomous driving systems. Reinforcement learning (RL) promises to achieve control performance superior to classical approaches while kee...
来源: 评论