咨询与建议

限定检索结果

文献类型

  • 1,356 篇 期刊文献
  • 933 篇 会议
  • 19 册 图书

馆藏范围

  • 2,308 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 1,585 篇 工学
    • 1,110 篇 计算机科学与技术...
    • 935 篇 软件工程
    • 315 篇 信息与通信工程
    • 277 篇 生物工程
    • 235 篇 生物医学工程(可授...
    • 209 篇 光学工程
    • 153 篇 电气工程
    • 145 篇 控制科学与工程
    • 128 篇 电子科学与技术(可...
    • 101 篇 化学工程与技术
    • 79 篇 机械工程
    • 59 篇 仪器科学与技术
    • 53 篇 材料科学与工程(可...
    • 51 篇 动力工程及工程热...
    • 44 篇 交通运输工程
    • 43 篇 安全科学与工程
  • 903 篇 理学
    • 393 篇 数学
    • 307 篇 生物学
    • 248 篇 物理学
    • 141 篇 统计学(可授理学、...
    • 92 篇 化学
    • 58 篇 系统科学
  • 399 篇 管理学
    • 212 篇 图书情报与档案管...
    • 194 篇 管理科学与工程(可...
    • 89 篇 工商管理
  • 197 篇 医学
    • 179 篇 临床医学
    • 154 篇 基础医学(可授医学...
    • 105 篇 药学(可授医学、理...
    • 62 篇 公共卫生与预防医...
  • 73 篇 法学
    • 64 篇 社会学
  • 36 篇 经济学
  • 21 篇 农学
  • 17 篇 教育学
  • 5 篇 文学
  • 5 篇 艺术学
  • 2 篇 军事学

主题

  • 63 篇 semantics
  • 47 篇 deep learning
  • 44 篇 machine learning
  • 44 篇 training
  • 42 篇 feature extracti...
  • 36 篇 computational mo...
  • 32 篇 deep neural netw...
  • 31 篇 task analysis
  • 29 篇 predictive model...
  • 29 篇 forecasting
  • 27 篇 image segmentati...
  • 27 篇 accuracy
  • 23 篇 data models
  • 22 篇 object detection
  • 22 篇 optimization
  • 22 篇 graph neural net...
  • 21 篇 recommender syst...
  • 20 篇 data mining
  • 18 篇 neural networks
  • 18 篇 visualization

机构

  • 102 篇 national enginee...
  • 54 篇 research center ...
  • 52 篇 school of comput...
  • 41 篇 zhejiang lab
  • 40 篇 school of cyber ...
  • 32 篇 national enginee...
  • 32 篇 university of ch...
  • 30 篇 college of compu...
  • 28 篇 hubei key labora...
  • 28 篇 hubei engineerin...
  • 27 篇 services computi...
  • 26 篇 huazhong univers...
  • 24 篇 tencent ai lab
  • 23 篇 department of co...
  • 22 篇 cluster and grid...
  • 21 篇 shenzhen researc...
  • 20 篇 school of inform...
  • 20 篇 pazhou lab
  • 19 篇 sjtu-pinghu inst...
  • 18 篇 peng cheng labor...

作者

  • 108 篇 hai jin
  • 100 篇 jin hai
  • 39 篇 xiaofei liao
  • 28 篇 liu jun
  • 28 篇 chen yen-wei
  • 25 篇 lin lanfen
  • 23 篇 hu shengshan
  • 21 篇 liu jing
  • 20 篇 haikun liu
  • 19 篇 long zheng
  • 18 篇 chen jianping
  • 18 篇 zhou linjie
  • 18 篇 liao xiaofei
  • 17 篇 zou deqing
  • 17 篇 li haizhou
  • 16 篇 v.i.belousov
  • 16 篇 j.beringer
  • 16 篇 lu liangjun
  • 15 篇 zhang leo yu
  • 15 篇 deqing zou

语言

  • 1,772 篇 英文
  • 523 篇 其他
  • 16 篇 中文
  • 1 篇 德文
  • 1 篇 法文
检索条件"机构=Data Science and Engineering Lab"
2308 条 记 录,以下是711-720 订阅
排序:
Persian FrameNet: A Novel Approach to build FrameNet in the Persian Language Applicable to Islamic Context  8
Persian FrameNet: A Novel Approach to build FrameNet in the ...
收藏 引用
8th Iranian Joint Congress on Fuzzy and Intelligent Systems, CFIS 2020
作者: Baghini, Mohammad Hossein Shojaei Janfada, Behrooz Bidgoli, Behrooz Minaei University of Science and Technology Data Mining Lab Faculty of Computer Engineering Tehran Iran
FrameNet is a lexical research project that produces a glossary containing very detailed information about syntax (semantic relationships of specific English words such as verbs, nouns, and adjectives). Both human and... 详细信息
来源: 评论
A new entity extraction model based on journalistic brazilian portuguese language to enhance named entity recognition  1st
A new entity extraction model based on journalistic brazilia...
收藏 引用
1st EAI International Conference on data and Information in Online Environments, DIONE 2020
作者: de Aquino Silva, Rogerio da Silva, Luana Dutra, Moisés Lima de Araujo, Gustavo Medeiros Engineering and Data Science Lab Federal University of Santa Catarina Florianópolis Brazil
Named Entity Recognition (NER) plays an important role on broad natural language processing applicability. According to the literature, the NER process applied to the English language reaches around 90% of accuracy. H... 详细信息
来源: 评论
Online Container Scheduling for Low-Latency IoT Services in Edge Cluster Upgrade: A Reinforcement Learning Approach
Online Container Scheduling for Low-Latency IoT Services in ...
收藏 引用
2023 IEEE/CIC International Conference on Communications in China, ICCC 2023
作者: Cui, Hanshuai Tang, Zhiqing Lou, Jiong Jia, Weijia Beijing Normal University Institute of Artificial Intelligence and Future Networks Zhuhai519087 China Beijing Normal University School of Artificial Intelligence Beijing100875 China Shanghai Jiao Tong University Department of Computer Science and Engineering Shanghai200240 China BNU-HKBU United International College Guangdong Key Lab of Ai and Multi-Modal Data Processing Zhuhai519087 China
In Mobile Edge Computing (MEC), Internet of Things (IoT) devices offload computationally-intensive tasks to edge nodes, where they are executed within containers, reducing the reliance on centralized cloud infrastruct... 详细信息
来源: 评论
How Graph Neural Networks Learn: Lessons from Training Dynamics
arXiv
收藏 引用
arXiv 2023年
作者: Yang, Chenxiao Wu, Qitian Wipf, David Sun, Ruoyu Yan, Junchi School of Artificial Intelligence Department of Computer Science and Engineering MoE Lab of AI Shanghai Jiao Tong University China Amazon Web Services United States School of Data Science The Chinese University of Hong Kong Shenzhen China Shenzhen International Center for Industrial and Applied Mathematics Shenzhen Research Institute of Big Data China
A long-standing goal in deep learning has been to characterize the learning behavior of black-box models in a more interpretable manner. For graph neural networks (GNNs), considerable advances have been made in formal... 详细信息
来源: 评论
Environment-aware dynamic graph learning for out-of-distribution generalization  23
Environment-aware dynamic graph learning for out-of-distribu...
收藏 引用
Proceedings of the 37th International Conference on Neural Information Processing Systems
作者: Haonan Yuan Qingyun Sun Xingcheng Fu Ziwei Zhang Cheng Ji Hao Peng Jianxin Li Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University and School of Computer Science and Engineering Beihang University Key Lab of Education Blockchain and Intelligent Technology Guangxi Normal University Department of Computer Science and Technology Tsinghua University Beijing Advanced Innovation Center for Big Data and Brain Computing Beihang University
Dynamic graph neural networks (DGNNs) are increasingly pervasive in exploiting spatio-temporal patterns on dynamic graphs. However, existing works fail to generalize under distribution shifts, which are common in real...
来源: 评论
ISSSR 2022 Keynote Speech II: Human-Machine Cooperation in Junior science Education: Development, Opportunities, and Challenges
ISSSR 2022 Keynote Speech II: Human-Machine Cooperation in J...
收藏 引用
International Symposium on System and Software Reliability (ISSSR)
作者: Liang Luo Assistant Director of National & Local Joint Engineering Lab of Next Generation Internet Data Processing Technology School of Computer Science and Engineering (School of Cyberspace Security) University of Electronic Science and Technology of China
Human-Machine-Environment (HME) Tri-Co (Coexisting, Cooperative, Cognitive) Education is an indispensable prerequisite and the main content of Artificial Intelligence empowering junior science education. Moreover, it ...
来源: 评论
A Review of Algorithms, datasets, and Criteria in Word Sense Disambiguation with a View to its Use in Islamic Texts  8
A Review of Algorithms, Datasets, and Criteria in Word Sense...
收藏 引用
8th Iranian Joint Congress on Fuzzy and Intelligent Systems, CFIS 2020
作者: Farahani, Yasamin Vasheghani Janfada, Behrooz Bidgoli, Behrooz Minaei University of Science and Technology Data Mining Lab Faculty of Computer Engineering Tehran Iran
Most of the words in a natural language are polysemous;it means, they have multiple senses. Word sense disambiguation is the process of determining the exact sense of the polysemous word by analyzing the context in wh... 详细信息
来源: 评论
Vision-Based Multimodal Interfaces: A Survey and Taxonomy for Enhanced Context-Aware System Design
arXiv
收藏 引用
arXiv 2025年
作者: Hu, Yongquan Tang, Jingyu Gong, Xinya Zhou, Zhongyi Zhang, Shuning Elvitigala, Don Samitha Mueller, Florian Hu, Wen Quigley, Aaron J. School of Computer Science and Engineering University of New South Wales Sydney Australia The University of Tokyo Tokyo Japan Exertion Games Lab Department of Human-Centred Computing Monash University Melbourne Australia School of Computer Science and Technology Huazhong University of Science and Technology Wuhan China Tsinghua University Beijing China Department of Computer Science and Engineering South University of Science and Technology Shenzhen China CSIRO’s Data61 University of New South Wales Sydney Australia
The recent surge in artificial intelligence, particularly in multimodal processing technology, has advanced human-computer interaction, by altering how intelligent systems perceive, understand, and respond to contextu... 详细信息
来源: 评论
A Joint Communication and Computation Framework for Digital Twin over Wireless Networks
arXiv
收藏 引用
arXiv 2024年
作者: Yang, Zhaohui Chen, Mingzhe Liu, Yuchen Zhang, Zhaoyang The College of Information Science and Electronic Engineering Zhejiang University Zhejiang Hangzhou310027 China Zhejiang Hangzhou310007 China Zhejiang Lab Zhejiang Hangzhou311100 China The Department of Electrical and Computer Engineering Institute for Data Science and Computing University of Miami Coral GablesFL33146 United States Department of Computer Science North Carolina State University RaleighNC27606 United States
In this paper, the problem of low-latency communication and computation resource allocation for digital twin (DT) over wireless networks is investigated. In the considered model, multiple physical devices in the physi... 详细信息
来源: 评论
A Physics-based and data-driven Approach for Localized Statistical Channel Modeling
arXiv
收藏 引用
arXiv 2023年
作者: Zhang, Shutao Ning, Xinzhi Zheng, Xi Shi, Qingjiang Chang, Tsung-Hui Luo, Zhi-Quan School of Science and Engineering The Chinese University of Hong Kong Shenzhen China Shenzhen Research Institute of Big Data Shenzhen China School of Software Engineering Tongji University Shanghai China Pengcheng Lab Shenzhen China Networking and User Experience Lab Huawei Technologies Shenzhen China
Localized channel modeling is crucial for offline performance optimization of 5G cellular networks, but the existing channel models are for general scenarios and do not capture local geographical structures. In this p... 详细信息
来源: 评论