咨询与建议

限定检索结果

文献类型

  • 129 篇 期刊文献
  • 23 篇 会议

馆藏范围

  • 152 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 77 篇 理学
    • 31 篇 生物学
    • 19 篇 物理学
    • 11 篇 化学
    • 6 篇 数学
    • 6 篇 大气科学
    • 4 篇 天文学
    • 4 篇 地球物理学
  • 72 篇 工学
    • 28 篇 计算机科学与技术...
    • 21 篇 软件工程
    • 13 篇 信息与通信工程
    • 12 篇 生物医学工程(可授...
    • 11 篇 化学工程与技术
    • 11 篇 生物工程
    • 9 篇 材料科学与工程(可...
    • 7 篇 光学工程
    • 5 篇 控制科学与工程
    • 4 篇 机械工程
    • 4 篇 电气工程
    • 4 篇 电子科学与技术(可...
    • 4 篇 环境科学与工程(可...
    • 3 篇 动力工程及工程热...
  • 40 篇 医学
    • 29 篇 临床医学
    • 23 篇 基础医学(可授医学...
    • 12 篇 公共卫生与预防医...
    • 7 篇 药学(可授医学、理...
  • 24 篇 管理学
    • 10 篇 管理科学与工程(可...
    • 10 篇 图书情报与档案管...
    • 6 篇 工商管理
    • 4 篇 公共管理
  • 13 篇 农学
  • 3 篇 经济学
    • 3 篇 应用经济学
  • 2 篇 法学
  • 2 篇 教育学
  • 2 篇 文学

主题

  • 8 篇 deep learning
  • 3 篇 computational mo...
  • 3 篇 feature extracti...
  • 3 篇 accuracy
  • 3 篇 training
  • 2 篇 nanocellulose
  • 2 篇 tissue
  • 2 篇 phishing
  • 2 篇 predictive marke...
  • 2 篇 graph neural net...
  • 2 篇 cosmology
  • 2 篇 large language m...
  • 2 篇 electrocardiogra...
  • 2 篇 long short term ...
  • 2 篇 computational bi...
  • 2 篇 data science
  • 2 篇 random forests
  • 2 篇 machine learning
  • 2 篇 artificial intel...
  • 2 篇 classification (...

机构

  • 6 篇 royal stoke univ...
  • 6 篇 cambridge univer...
  • 6 篇 university of gl...
  • 6 篇 department of co...
  • 6 篇 innovation cente...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 health managemen...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...

作者

  • 7 篇 chien ting-ying
  • 6 篇 kari stefansson
  • 5 篇 vilmantas giedra...
  • 5 篇 timothy m frayli...
  • 5 篇 mark i mccarthy
  • 5 篇 abu-gharbieh ema...
  • 5 篇 abolhassani hass...
  • 4 篇 danish saleheen
  • 4 篇 andrew t hatters...
  • 4 篇 igor rudan
  • 4 篇 eleftheria zeggi...
  • 4 篇 maggie c y ng
  • 4 篇 francis s collin...
  • 4 篇 caroline hayward
  • 4 篇 konstantin strau...
  • 4 篇 fagbamigbe adeni...
  • 4 篇 naveed sattar
  • 4 篇 chu dinh-toi
  • 4 篇 abbasi-kangevari...
  • 4 篇 chattu vijay kum...

语言

  • 143 篇 英文
  • 7 篇 其他
  • 2 篇 中文
检索条件"机构=Data Science and Innovation Program"
152 条 记 录,以下是1-10 订阅
排序:
Phishing Email Detection Model Using Deep Learning
Phishing Email Detection Model Using Deep Learning
收藏 引用
Cybernetics and innovations (ICCI), International Conference on
作者: Natthaphong Pimpason Pranodnard Viboonsang Somkiat Kosolsombat Data Science and Innovation Program College of Interdisciplinary Studies Thammasat University Pathum Thani Thailand
Phishing via email continues to be a concern in the cybersecurity realm as it exposes both individuals and companies to levels of risk due to clever social engineering methods employed by cybercriminals. This study in... 详细信息
来源: 评论
Phishing URL Detection Using Machine Learning and Deep Learning in NLP
Phishing URL Detection Using Machine Learning and Deep Learn...
收藏 引用
Cybernetics and innovations (ICCI), International Conference on
作者: Nutcha Srilachai Pranodnard Viboonsang Somkiat Kosolsombat Data Science and Innovation Program College of Interdisciplinary Studies Thammasat University Pathum Thani Thailand
Phishing attacks are an emerging cyber threat that makes use of fake URLs to pilfer sensitive information of users, such as their login credentials and other financial details. In line with this, the present study inv... 详细信息
来源: 评论
Optimizing Malware Detection with Random Forest, XGBoost, LightGBM, and LLM-Reporting
Optimizing Malware Detection with Random Forest, XGBoost, Li...
收藏 引用
Cybernetics and innovations (ICCI), International Conference on
作者: Aticha Charoenthanakitkul Pranodnard Viboonsang Somkiat Kosolsombat Data Science and Innovation Program College of Interdisciplinary Studies Thammasat University Pathum Thani Thailand
This study presents a comprehensive framework for malware detection that integrates traditional machine learning algorithms with advanced large language models (LLMs) to enhance both classification accuracy and automa... 详细信息
来源: 评论
Correction: Learning distribution-free anchored linear structural equation models in the presence of measurement error
收藏 引用
Journal of the Korean Statistical Society 2025年 1-2页
作者: Chung, Junhyoung Ahn, Youngmin Shin, Donguk Park, Gunwoong Department of Statistics Seoul National University Seoul Republic of Korea Institute for Data Innovation in Science Seoul National University Donguk Shin Seoul Republic of Korea Interdisciplinary Program in Artificial Intelligence Seoul National University Seoul Republic of Korea
来源: 评论
Cryptotanshinone Suppresses the STAT3/BCL-2 Pathway to Provoke Human Bladder Urothelial Carcinoma Cell Death
收藏 引用
Environmental Toxicology 2025年 第4期40卷 624-635页
作者: Tung, Min-Che Chang, Ge-Man Dai, Wen-Chyi Hsu, Chen-Hsuan Chang, Hsiang-Chun Yang, Wei-Ting Ho, Yann-Jen Lu, Chien-Hsing Chen, Yi-Hsin Chang, Chia-Che Division of Urology Department of Surgery Tungs' Taichung MetroHarbor Hospital Taichung Taiwan Graduate Institute of Biomedical Sciences National Chung Hsing University Taichung Taiwan Doctoral Program in Biotechnology Industrial Innovation and Management National Chung Hsing University Taichung Taiwan Department of Life Sciences National Chung Hsing University Taichung Taiwan Department of Obstetrics and Gynecology Taichung Veterans General Hospital Taichung Taiwan Doctoral Program in Translational Medicine National Chung Hsing University Taichung Taiwan Department of Nephrology Taichung Tzu Chi Hospital Buddhist Tzu chi Medical Foundation Taichung Taiwan School of Medicine Tzu Chi University Hualein Taiwan Department of Artificial Intelligence and Data Science National Chung Hsing University Taichung Taiwan Master Program in Precision Health Rong Hsing Research Center for Translational Medicine The iEGG and Animal Biotechnology Research Center National Chung Hsing University Taichung Taiwan Department of Medical Laboratory Science and Biotechnology Asia University Taichung Taiwan Department of Medical Research China Medical University Hospital Taichung Taiwan
Bladder cancer is one of the most common human malignancies worldwide. Aberrant activation of signal transducer and activator of transcription 3 (STAT3) is crucial to driving malignant progression and predicting poor ... 详细信息
来源: 评论
Respiratory syncytial virus vaccine effectiveness among US veterans, September, 2023 to March, 2024: a target trial emulation study
收藏 引用
The Lancet Infectious Diseases 2025年 第6期25卷 625-633页
作者: Bajema, Kristina L Yan, Lei Li, Yuli Argraves, Stephanie Rajeevan, Nallakkandi Fox, Alexandra Vergun, Robert Berry, Kristin Bui, David Huang, Yuan Lin, Hung-Mo Hynes, Denise M Lucero-Obusan, Cynthia Schirmer, Patricia Cunningham, Francesca Huang, Grant D Aslan, Mihaela Ioannou, George N Veterans Affairs Portland Health Care System Portland OR United States Division of Infectious Diseases Department of Medicine Oregon Health & Science University Portland OR United States Veterans Affairs Cooperative Studies Program Clinical Epidemiology Research Center Veterans Affairs Connecticut Health Care System West Haven CT United States Department of Biostatistics Yale School of Public Health New Haven CT United States Biomedical Informatics & Data Science Yale School of Medicine New Haven CT United States Department of Internal Medicine Yale School of Medicine New Haven CT United States Seattle Epidemiologic Research and Information Center Veterans Affairs Puget Sound Health Care System Seattle WA United States Research and Development Veterans Affairs Puget Sound Health Care System Seattle WA United States Center of Innovation to Improve Veteran Involvement in Care Veterans Affairs Portland Health Care System Portland OR United States Health Management and Policy College of Health Oregon State University Corvallis OR United States Health Data and Informatics Program Center for Quantitative Life Sciences Oregon State University Corvallis OR United States Public Health National Program Office Veterans Health Administration Palo Alto CA United States Public Health National Program Office Veterans Health Administration Washington DC United States Veterans Affairs Center for Medication Safety—Pharmacy Benefit Management Services Hines IL United States Office of Research and Development Veterans Health Administration Washington DC United States Division of Gastroenterology Veterans Affairs Puget Sound Health Care System and University of Washington Seattle WA United States
Background: New respiratory syncytial virus (RSV) vaccines have been approved in the USA for the prevention of RSV-associated lower respiratory tract disease in adults aged 60 years and older. Information on the real-...
来源: 评论
Improved LSTM hyperparameters alongside sentiment walk-forward validation for time series prediction
收藏 引用
Journal of Open innovation: Technology, Market, and Complexity 2025年 第1期11卷
作者: Wahyuddin, Eko Putra Caraka, Rezzy Eko Kurniawan, Robert Caesarendra, Wahyu Gio, Prana Ugiana Pardamean, Bens Department of Statistical Computing Politeknik Statistika STIS Jakarta 13330 Indonesia Statistics Indonesia (BPS) Jl. Dr Sutomo 6-8 Jakarta Indonesia School of Economics and Business Telkom University Bandung 40257 Indonesia Research Center for Data and Information Sciences Research Organization for Electronics and Informatics National Research and Innovation Agency (BRIN) Bandung 40135 Indonesia Faculty of Integrated Technologies Universiti Brunei Darussalam Gadong BE1410 Brunei Darussalam Department of Mathematics Universitas Sumatera Utara Medan 20155 Indonesia Bioinformatics and Data Science Research Centre Bina Nusantara University DKI Jakarta 11480 Indonesia Computer Science Department BINUS Graduate Program Master of Computer Science Program Bina Nusantara University DKI Jakarta 11480 Indonesia
This study aims to address the common issue of biased estimation errors in time series modeling by analyzing the error in locating ideal hyperparameters and defining appropriate validation methods. Specifically, it fo... 详细信息
来源: 评论
Biomedical data and AI
收藏 引用
science China Life sciences 2025年 第5期68卷 1536-1540页
作者: Hao Xu Shibo Zhou Zefeng Zhu Vincenzo Vitelli Liangyi Chen Ziwei Dai Ning Yang Luhua Lai Shengyong Yang Sergey Ovchinnikov Zhuoran Qiao Sirui Liu Chen Song Jianfeng Pei Han Wen Jianfeng Feng Yaoyao Zhang Zhengwei Xie Yang-Yu Liu Zhiyuan Li Fulai Jin Hao Li Mohammad Lotfollahi Xuegong Zhang Ge Yang Shihua Zhang Ge Gao Pulin Li Qi Liu Jing-Dong Jackie Han Peking-Tsinghua Center for Life Sciences (CLS) Academy for Advanced Interdisciplinary StudiesPeking University Center for Quantitative Biology (CQB) Academy for Advanced Interdisciplinary StudiesPeking University Peking University-Tsinghua University-National Institute of Biological Sciences Joint Graduate Program Academy for Advanced Interdisciplinary StudiesPeking University Department of Physics University of Chicago School of Life Sciences Southern University of Science and Technology Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies College of Chemistry and Molecular Engineering Peking University Department of Biotherapy Cancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan University Department of Biology Massachusetts Institute of Technology Lambic Therapeutics Inc. Changping Laboratory Al for Science Institute Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence Fudan University Department of Obstetrics and Gynecology West China Second University HospitalSichuan University Peking University International Cancer Institute and Peking University-Yunnan Baiyao International Medical Institute and State Key Laboratory of Natural and Biomimetic Drugs Department of Molecular and Cellular PharmacologySchool of Pharmaceutical SciencesPeking University Health Science CenterPeking University Channing Division of Network Medicine Department of MedicineBrigham and Women's Hospital and Harvard Medical School Center for Artificial Intelligence and Modeling the Carl R.Woese Institute for Genomic BiologyUniversity of Illinois Urbana-Champaign Department of Genetics and Genome Sciences School of Medicine and Department of Computer and Data Sciences and Department of Population and Quantitative Health SciencesCase Western Reserve University Department of Biochemistry and Biophysics University of California Sanger Institute Department of Automation Tsinghua University State Key Laboratory of Multimodal Artificial Intelligence Systems I
The development of artificial intelligence(AI) and the mining of biomedical data complement each other. From the direct use of computer vision results to analyze medical images for disease screening, to now integratin...
来源: 评论
ADAM-1: AI and Bioinformatics for Alzheimer’s Detection and Microbiome-Clinical data Integrations
arXiv
收藏 引用
arXiv 2025年
作者: Huang, Ziyuan Sekhon, Vishaldeep Kaur Guo, Ouyang Newman, Mark Sadeghian, Roozbeh Vaida, Maria L. Jo, Cynthia Ward, Doyle Bucci, Vanni Haran, John P. Department of Microbiology UMass Chan Medical School WorcesterMA01655 United States Department of Geriatric Medicine and Gerontology Johns Hopkins University BaltimoreMD21218 United States Data Sciences Harrisburg University of Science and Technology HarrisburgPA17101 United States DevIS Innovation Labs DevIS LLC ArlingtonVA22201 United States Department of Emergency Medicine UMass Chan Medical School WorcesterMA01655 United States Program in Microbiome Dynamics UMass Chan Medical School WorcesterMA01655 United States
The Alzheimer’s Disease Analysis Model Generation 1 (ADAM-1) is a multi-agent large language model (LLM) framework designed to integrate and analyze multi-modal data, including microbiome profiles, clinical datasets,... 详细信息
来源: 评论
Characterizing Emergency Department Care for Patients With Histories of Incarceration
收藏 引用
JACEP Open 2025年 第1期6卷 100022-100022页
作者: Huang, Thomas Socrates, Vimig Ovchinnikova, Polina Faustino, Isaac Kumar, Anusha Safranek, Conrad Chi, Ling Wang, Emily A. Puglisi, Lisa Wong, Ambrose H. Wang, Karen H. Taylor, R. Andrew Department of Emergency Medicine Yale School of Medicine New Haven CT United States Department for Biomedical Informatics and Data Science Yale University School of Medicine New Haven CT United States Program of Computational Biology and Bioinformatics Yale University New Haven CT United States SEICHE Center for Health and Justice Yale School of Medicine New Haven CT United States Equity Research and Innovation Center Yale School of Medicine Yale University New Haven CT United States
Objectives: Patients with a history of incarceration experience bias from health care team members, barriers to privacy, and a multitude of health care disparities. We aimed to assess care processes delivered in emerg... 详细信息
来源: 评论