咨询与建议

限定检索结果

文献类型

  • 607 篇 会议
  • 517 篇 期刊文献
  • 17 册 图书

馆藏范围

  • 1,141 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 743 篇 工学
    • 608 篇 计算机科学与技术...
    • 507 篇 软件工程
    • 156 篇 信息与通信工程
    • 104 篇 生物工程
    • 76 篇 电气工程
    • 76 篇 控制科学与工程
    • 53 篇 生物医学工程(可授...
    • 48 篇 建筑学
    • 45 篇 光学工程
    • 43 篇 电子科学与技术(可...
    • 43 篇 土木工程
    • 36 篇 化学工程与技术
    • 29 篇 机械工程
    • 18 篇 动力工程及工程热...
    • 18 篇 航空宇航科学与技...
    • 15 篇 交通运输工程
  • 399 篇 理学
    • 238 篇 数学
    • 110 篇 生物学
    • 95 篇 统计学(可授理学、...
    • 89 篇 物理学
    • 39 篇 化学
    • 39 篇 系统科学
    • 16 篇 大气科学
  • 262 篇 管理学
    • 167 篇 图书情报与档案管...
    • 108 篇 管理科学与工程(可...
    • 40 篇 工商管理
  • 66 篇 医学
    • 58 篇 临床医学
    • 44 篇 基础医学(可授医学...
    • 34 篇 药学(可授医学、理...
  • 35 篇 法学
    • 33 篇 社会学
  • 11 篇 经济学
  • 9 篇 农学
  • 8 篇 教育学
  • 3 篇 文学
  • 1 篇 哲学
  • 1 篇 历史学
  • 1 篇 军事学

主题

  • 50 篇 semantics
  • 39 篇 training
  • 36 篇 data mining
  • 24 篇 feature extracti...
  • 23 篇 knowledge engine...
  • 22 篇 computer science
  • 22 篇 machine learning
  • 22 篇 artificial intel...
  • 21 篇 computational mo...
  • 20 篇 task analysis
  • 19 篇 visualization
  • 17 篇 data engineering
  • 17 篇 knowledge graph
  • 16 篇 ontologies
  • 15 篇 deep learning
  • 15 篇 knowledge manage...
  • 14 篇 conferences
  • 14 篇 convolution
  • 13 篇 ontology
  • 12 篇 predictive model...

机构

  • 105 篇 school of comput...
  • 56 篇 department of da...
  • 56 篇 department of da...
  • 42 篇 key laboratory o...
  • 34 篇 college of compu...
  • 33 篇 school of inform...
  • 27 篇 key laboratory o...
  • 27 篇 department of ma...
  • 25 篇 key laboratory o...
  • 22 篇 school of econom...
  • 22 篇 knowledge and da...
  • 21 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 17 篇 key laboratory o...
  • 16 篇 college of compu...
  • 16 篇 data and knowled...
  • 15 篇 school of cyber ...
  • 15 篇 faculty of compu...
  • 14 篇 institute of dat...
  • 14 篇 school of comput...

作者

  • 50 篇 nürnberger andre...
  • 31 篇 wang meng
  • 30 篇 wu xindong
  • 27 篇 chatterjee soumi...
  • 25 篇 liu hongyan
  • 25 篇 he jun
  • 23 篇 sun geng
  • 23 篇 xindong wu
  • 23 篇 du xiaoyong
  • 22 篇 speck oliver
  • 21 篇 spanakis gerasim...
  • 21 篇 liu jun
  • 20 篇 niyato dusit
  • 19 篇 hong richang
  • 19 篇 mehrkanoon siama...
  • 18 篇 browne cameron
  • 18 篇 o'sullivan decla...
  • 18 篇 wade vincent
  • 17 篇 soemers dennis j...
  • 17 篇 huang qingming

语言

  • 1,025 篇 英文
  • 107 篇 其他
  • 9 篇 中文
检索条件"机构=Data Science and Knowledge Engineering"
1141 条 记 录,以下是421-430 订阅
排序:
Deep Neural-Kernel Machines
arXiv
收藏 引用
arXiv 2020年
作者: Mehrkanoon, Siamak Department of Data Science and Knowledge Engineering Maastricht University Netherlands
In this chapter we review the main literature related to the recent advancement of deep neural-kernel architecture, an approach that seek the synergy between two powerful class of models, i.e. kernel-based models and ... 详细信息
来源: 评论
Cross-domain neural-kernel networks  31
Cross-domain neural-kernel networks
收藏 引用
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on Machine Learning, BNAIC/BENELEARN 2019
作者: Mehrkanoon, Siamak Department of Data Science and Knowledge Engineering Maastricht University Netherlands
A novel cross-domain neural-kernel networks architecture for semi-supervised domain adaption problem is introduced. The proposed model consists of two stream neural-kernel networks corresponding to the source and targ... 详细信息
来源: 评论
Deep shared representation learning for weather elements forecasting  31
Deep shared representation learning for weather elements for...
收藏 引用
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on Machine Learning, BNAIC/BENELEARN 2019
作者: Mehrkanoon, Siamak Department of Data Science and Knowledge Engineering Maastricht University Netherlands
This paper introduces a data-driven predictive model based on deep convolutional neural networks (CNN) architecture for wind speed prediction in weather data. The model exploits the spatio-temporal multivariate weathe... 详细信息
来源: 评论
Deep coastal sea elements forecasting using U-Net based models
arXiv
收藏 引用
arXiv 2020年
作者: Fernández, Jesús García Abdellaoui, Ismail Alaoui Mehrkanoon, Siamak Department of Data Science and Knowledge Engineering Maastricht University Netherlands
The supply and demand of energy is influenced by meteorological conditions. The relevance of accurate weather forecasts increases as the demand for renewable energy sources increases. The energy providers and policy m... 详细信息
来源: 评论
Deep brain state classification of MEG data
arXiv
收藏 引用
arXiv 2020年
作者: Abdellaoui, Ismail Alaoui Fernandez, Jesus Garcia Sahinli, Caner Mehrkanoon, Siamak Department of Data Science and Knowledge Engineering Maastricht University Netherlands
Neuroimaging techniques have shown to be useful when studying the brains activity. This paper uses Magnetoencephalography (MEG) data, provided by the Human Connectome Project (HCP), in combination with various deep ar... 详细信息
来源: 评论
Computable random variables and conditioning
arXiv
收藏 引用
arXiv 2020年
作者: Collins, Pieter Department of Data Science and Knowledge Engineering Maastricht University Netherlands
The aim of this paper is to present an elementary computable theory of random variables, based on the approach to probability via valuations. The theory is based on a type of lower-measurable sets, which are controlle... 详细信息
来源: 评论
Bridging face and sound modalities through domain adaptation metric learning  27
Bridging face and sound modalities through domain adaptation...
收藏 引用
27th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, ESANN 2019
作者: Athanasiadis, Christos Hortal, Enrique Asteriadis, Stylianos Department of Data Science and Knowledge Engineering Maastricht University Netherlands
Robust emotion recognition systems require extensive training by employing huge number of training samples with purpose of generating sophisticated models. Furthermore, research is mostly focused on facial expression ... 详细信息
来源: 评论
Synthesizing personality-dependent body postures using generative adversarial networks  31
Synthesizing personality-dependent body postures using gener...
收藏 引用
31st Benelux Conference on Artificial Intelligence and the 28th Belgian Dutch Conference on Machine Learning, BNAIC/BENELEARN 2019
作者: Calsius, Frederik Asteriadis, Stylianos Department of Data Science and Knowledge Engineering Maastricht University Netherlands
In Personality Computing, one of the major goals is to estimate the personality of an individual by making use of computational techniques. Among the existing models that classify personality traits, the Big-5 factor ... 详细信息
来源: 评论
Complex Network for Complex Problems: A comparative study of CNN and Complex-valued CNN
arXiv
收藏 引用
arXiv 2023年
作者: Chatterjee, Soumick Tummala, Pavan Speck, Oliver Nürnberger, Andreas Faculty of Computer Science Otto von Guericke University Magdeburg Germany Data and Knowledge Engineering Group Otto von Guericke University Magdeburg Germany Biomedical Magnetic Resonance Otto von Guericke University Magdeburg Germany German Center for Neurodegenerative Disease Magdeburg Germany Center for Behavioral Brain Sciences Magdeburg Germany
Neural networks, especially convolutional neural networks (CNN), are one of the most common tools these days used in computer vision. Most of these networks work with real-valued data using real-valued features. Compl... 详细信息
来源: 评论
A new steganography without embedding based on adversarial training  20
A new steganography without embedding based on adversarial t...
收藏 引用
2020 ACM Turing Celebration Conference - China, ACM TURC 2020
作者: Jiang, Wenjie Hu, Donghui Yu, Cong Li, Meng Zhao, Zhong-Qiu Key Laboratory of Knowledge Engineering with Big Data Hefei University of Technology Ministry of Education and College of Computer Science and Information Engineering !!!Hefei University of Technology Hefei China College of Computer Science and Information Engineering Hefei University of Technology Hefei230601 China
Steganography is an art to hide information in the carriers to prevent from being detected, while steganalysis is the opposite art to detect the presence of the hidden information. With the development of deep learnin... 详细信息
来源: 评论