咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 53 篇 会议

馆藏范围

  • 136 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 67 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 23 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 17 篇 光学工程
    • 14 篇 信息与通信工程
    • 10 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 6 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 控制科学与工程
    • 4 篇 交通运输工程
    • 4 篇 环境科学与工程(可...
  • 57 篇 理学
    • 27 篇 数学
    • 25 篇 生物学
    • 18 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 10 篇 化学
    • 6 篇 系统科学
    • 2 篇 地球物理学
  • 22 篇 管理学
    • 15 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 10 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 predictive model...
  • 5 篇 forecasting
  • 4 篇 reinforcement le...
  • 4 篇 deep learning
  • 4 篇 semantics
  • 3 篇 routing
  • 3 篇 deep neural netw...
  • 3 篇 data engineering
  • 3 篇 topology
  • 3 篇 accuracy
  • 3 篇 training
  • 3 篇 recurrent neural...
  • 2 篇 three-dimensiona...
  • 2 篇 image segmentati...
  • 2 篇 optimization
  • 2 篇 data mining
  • 2 篇 adversarial mach...
  • 2 篇 computational mo...
  • 2 篇 syntactics

机构

  • 16 篇 school of data a...
  • 9 篇 key laboratory o...
  • 8 篇 pazhou lab
  • 8 篇 center for data ...
  • 7 篇 key lab. of mach...
  • 7 篇 college of compu...
  • 7 篇 school of comput...
  • 6 篇 center for data ...
  • 6 篇 peng cheng labor...
  • 6 篇 the state key la...
  • 5 篇 software college...
  • 5 篇 data science and...
  • 5 篇 national key lab...
  • 4 篇 faculty of infor...
  • 4 篇 department of ar...
  • 4 篇 center for machi...
  • 4 篇 university of pe...
  • 4 篇 max planck insti...
  • 4 篇 faculty of elect...
  • 4 篇 department of co...

作者

  • 10 篇 xu guandong
  • 9 篇 zheng wei-shi
  • 6 篇 müller klaus-rob...
  • 5 篇 bakas spyridon
  • 5 篇 li qian
  • 5 篇 höhne marina m.-...
  • 5 篇 su qinliang
  • 5 篇 wang liwei
  • 4 篇 yin jianwei
  • 4 篇 xu zenan
  • 4 篇 li hongwei bran
  • 4 篇 velichko yury
  • 4 篇 quan xiaojun
  • 4 篇 linguraru marius...
  • 4 篇 cao longbing
  • 4 篇 miao xiaoye
  • 4 篇 tkatchenko alexa...
  • 4 篇 guandong xu
  • 3 篇 tahon nourel hod...
  • 3 篇 unke oliver t.

语言

  • 128 篇 英文
  • 8 篇 其他
检索条件"机构=Data Science and Machine Intelligence Lab"
136 条 记 录,以下是21-30 订阅
排序:
LimeSoDa: A dataset Collection for Benchmarking of machine Learning Regressors in Digital Soil Mapping
arXiv
收藏 引用
arXiv 2025年
作者: Schmidinger, Jonas Vogel, Sebastian Barkov, Viacheslav Pham, Anh-Duy Gebbers, Robin Tavakoli, Hamed Correa, Jose Tavares, Tiago R. Filippi, Patrick Jones, Edward J. Lukas, Vojtech Boenecke, Eric Ruehlmann, Joerg Schroeter, Ingmar Kramer, Eckart Paetzold, Stefan Kodaira, Masakazu Wadoux, Alexandre M.J.-C. Bragazza, Luca Metzger, Konrad Huang, Jingyi Valente, Domingos S.M. Safanelli, Jose L. Bottega, Eduardo L. Dalmolin, Ricardo S.D. Farkas, Csilla Steiger, Alexander Horst, Taciara Z. Ramirez-Lopez, Leonardo Scholten, Thomas Stumpf, Felix Rosso, Pablo Costa, Marcelo M. Zandonadi, Rodrigo S. Wetterlind, Johanna Atzmueller, Martin Osnabrück University Joint Lab Artificial Intelligence and Data Science Osnabrück Germany Department of Agromechatronics Potsdam Germany Piracicaba Brazil The University of Sydney Sydney Institute of Agriculture Sydney Australia Mendel University in Brno Department of Agrosystems and Bioclimatology Brno Czech Republic Leibniz Institute of Vegetable and Ornamental Crops Next Generation Horticultural Systems Grossbeeren Germany Eberswalde University for Sustainable Development Landscape Management and Nature Conservation Eberswalde Germany Soil Science and Soil Ecology Bonn Germany Tokyo University of Agriculture and Technology Institute of Agriculture Tokyo Japan LISAH Univ. Montpellier AgroParisTech INRAE IRD L'Institut Agro Montpellier France Agroscope Field-Crop Systems and Plant Nutrition Nyon Switzerland University of Wisconsin-Madison Department of Soil Science Madison United States Federal University of Viçosa Department of Agricultural Engineering Viçosa Brazil Woodwell Climate Research Center Falmouth United States Academic Coordination Santa Maria Brazil Soil Department Santa Maria Brazil Division of Environment and Natural Resources Aas Norway University of Rostock Chair of Geodesy and Geoinformatics Rostock Germany Federal Technological University of Paraná Dois Vizinhos Brazil BÜCHI Labortechnik AG Data Science Department Flawil Switzerland Imperial College London Imperial College Business School London United Kingdom University of Tübingen Department of Geosciences Tübingen Germany University of Tübingen DFG Cluster of Excellence Machine Learning for Science’ Germany Bern University of Applied Sciences Competence Center for Soils Zollikofen Switzerland Simulation and Data Science Müncheberg Germany Federal University of Jataí Institute of Agricultural Sciences Jatai Brazil Federal University of Mato Grosso Instute of Agricultural and Environmental Scinces Sinop Brazil Department of Soil and Environment Skara
Digital soil mapping (DSM) relies on a broad pool of statistical methods, yet determining the optimal method for a given context remains challenging and contentious. Benchmarking studies on multiple datasets are neede... 详细信息
来源: 评论
Attention-based unsupervised prompt learning for SAM in leaf disease segmentation
收藏 引用
Knowledge-Based Systems 2025年 320卷
作者: Luda Tian Yingchun Yuan Qing En Wei Ma Guanghui Zhang Fangfang Liang School of Information Science and Technology Hebei Agricultural University Baoding 071001 China Hebei Key Laboratory of Agricultural Big Data Baoding 071001 China Hebei Engineering Research Center for Agricultural Remote Sensing Application Baoding 071001 China Artificial Intelligence and Machine Learning (AIML) Lab School of Computer Science Carleton University Ottawa K1S 5B6 Canada Faculty of Information Technology Beijing University of Technology Beijing 100124 China
In modern agriculture, leaf disease segmentation is crucial for crop disease management and yield improvement. Since most deep learning-based segmentation models require extensive annotations, pursuing unsupervised me...
来源: 评论
High-dimensional Multivariate Time Series Forecasting in IoT Applications using Embedding Non-stationary Fuzzy Time Series
High-dimensional Multivariate Time Series Forecasting in IoT...
收藏 引用
Latin America Congress on Computational intelligence (LA-CCI)
作者: Hugo Vinicius Bitencourt Frederico Gadelha Guimarães Machine Intelligence and Data Science Lab (MINDS) Graduate Program in Electrical Engineering Universidade Federal de Minas Gerais Belo Horizonte MG Brazil Machine Intelligence and Data Science Lab (MINDS) Universidade Federal de Minas Gerais Belo Horizonte MG Brazil
In Internet of things (IoT), data is continuously recorded from different data sources and devices can suffer faults in their embedded electronics, thus leading to a high-dimensional data sets and concept drift events... 详细信息
来源: 评论
LSTM based Soft-Sensor for Estimating Nitrate Concentration in Aquaponics pond
LSTM based Soft-Sensor for Estimating Nitrate Concentration ...
收藏 引用
Innovation in Technology (INOCON), IEEE International Conference for
作者: A. Dharshan Purushottam Kumar S. Ravimaran U Srinivasulu Reddy Department of Artificial Intelligence and Data Science Saranathan College of Engineering Trichy India CoE in Artificial Intelligence Machine Learning & Data Analytics Lab National Institute of Technology Trichy India Department of Computer Applications Machine Learning & Data Analytics Lab National Institute of Technology Trichy India
In the field of aquaponics, where fish and plants coexist in a symbiotic environment, closely monitoring nitrate levels in the water is crucial due to their profound impact on aquatic and plant well-being. Traditional...
来源: 评论
Abnormality Detection in Chest X-Ray Images Using Uncertainty Prediction Autoencoders  23rd
Abnormality Detection in Chest X-Ray Images Using Uncertaint...
收藏 引用
23rd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020
作者: Mao, Yifan Xue, Fei-Fei Wang, Ruixuan Zhang, Jianguo Zheng, Wei-Shi Liu, Hongmei School of Data and Computer Science Sun Yat-sen University Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing MOE Guangzhou China Department of Computer Science and Engineering Southern University of Science and Technology Shenzhen China Pazhou Lab Guangzhou China Guangdong Province Key Laboratory of Information Security Technology Guangzhou China
Chest radiography is widely used in annual medical screening to check whether lungs are healthy or not. Therefore it would be desirable to develop an intelligent system to help clinicians automatically detect potentia... 详细信息
来源: 评论
An Asymmetric Modeling for Action Assessment  1
收藏 引用
16th European Conference on Computer Vision, ECCV 2020
作者: Gao, Jibin Zheng, Wei-Shi Pan, Jia-Hui Gao, Chengying Wang, Yaowei Zeng, Wei Lai, Jianhuang School of Data and Computer Science Sun Yat-sen University Guangzhou China Peng Cheng Laboratory Shenzhen518005 China School of Electronics Engineering and Computer Science Peking University Beijing China Pazhou Lab Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou China
Action assessment is a task of assessing the performance of an action. It is widely applicable to many real-world scenarios such as medical treatment and sporting events. However, existing methods for action assessmen... 详细信息
来源: 评论
CFR-ICL: Cascade-Forward Refinement with Iterative Click Loss for Interactive Image Segmentation
arXiv
收藏 引用
arXiv 2023年
作者: Sun, Shoukun Xian, Min Xu, Fei Capriotti, Luca Yao, Tiankai Machine Intelligence and Data Analytics Lab Department of Computer Science University of Idaho United States Idaho National Laboratory United States
The click-based interactive segmentation aims to extract the object of interest from an image with the guidance of user clicks. Recent work has achieved great overall performance by employing feedback from the output.... 详细信息
来源: 评论
Differentiable and Scalable Generative Adversarial Models for data Imputation (Extended Abstract)  40
Differentiable and Scalable Generative Adversarial Models fo...
收藏 引用
40th IEEE International Conference on data Engineering, ICDE 2024
作者: Wu, Yangyang Wang, Jun Miao, Xiaoye Wang, Wenjia Yin, Jianwei Software College Zhejiang University Ningbo China Academy of Interdisciplinary Studies The Hong Kong University of Science and Technology Hong Kong Hong Kong Center for Data Science Zhejiang University Hangzhou China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China Guangzhou China College of Computer Science Zhejiang University Hangzhou China
The dramatically increasing volume of incomplete data makes the imputation models computationally infeasible in many real-life applications. In this paper, we propose an effective scalable imputation system named SCIS... 详细信息
来源: 评论
MINI-Net: Multiple Instance Ranking Network for Video Highlight Detection  16th
MINI-Net: Multiple Instance Ranking Network for Video Highli...
收藏 引用
16th European Conference on Computer Vision, ECCV 2020
作者: Hong, Fa-Ting Huang, Xuanteng Li, Wei-Hong Zheng, Wei-Shi School of Data and Computer Science Sun Yat-sen University Guangzhou China Peng Cheng Laboratory Shenzhen518005 China VICO Group University of Edinburgh Edinburgh United Kingdom Pazhou Lab Guangzhou China Key Laboratory of Machine Intelligence and Advanced Computing Ministry of Education Guangzhou China
We address the weakly supervised video highlight detection problem for learning to detect segments that are more attractive in training videos given their video event label but without expensive supervision of manuall... 详细信息
来源: 评论
Quantus: An explainable ai toolkit for responsible evaluation of neural network explanations and beyond
The Journal of Machine Learning Research
收藏 引用
The Journal of machine Learning Research 2023年 第1期24卷 1339-1349页
作者: Anna Hedström Leander Weber Dilyara Bareeva Daniel Krakowczyk Franz Motzkus Wojciech Samek Sebastian Lapuschkin Marina M.-C. Höhne Understandable Machine Intelligence Lab TU Berlin Berlin Germany Department of Artificial Intelligence Fraunhofer Heinrich-Hertz-Institute Berlin Germany Department of Computer Science University of Potsdam Potsdam Germany Department of Electrical Engineering and Computer Science TU Berlin and Department of Artificial Intelligence Fraunhofer Heinrich-Hertz-Institute Berlin Germany Understandable Machine Intelligence Lab TU Berlin Berlin Germany and BIFOLD - Berlin Institute for the Foundations of Learning and Data Berlin Germany
The evaluation of explanation methods is a research topic that has not yet been explored deeply, however, since explainability is supposed to strengthen trust in artificial intelligence, it is necessary to systematica... 详细信息
来源: 评论