咨询与建议

限定检索结果

文献类型

  • 83 篇 期刊文献
  • 53 篇 会议

馆藏范围

  • 136 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 90 篇 工学
    • 67 篇 计算机科学与技术...
    • 58 篇 软件工程
    • 23 篇 生物工程
    • 19 篇 生物医学工程(可授...
    • 17 篇 光学工程
    • 14 篇 信息与通信工程
    • 10 篇 电气工程
    • 10 篇 电子科学与技术(可...
    • 6 篇 机械工程
    • 6 篇 化学工程与技术
    • 5 篇 控制科学与工程
    • 4 篇 交通运输工程
    • 4 篇 环境科学与工程(可...
  • 57 篇 理学
    • 27 篇 数学
    • 25 篇 生物学
    • 18 篇 物理学
    • 12 篇 统计学(可授理学、...
    • 10 篇 化学
    • 6 篇 系统科学
    • 2 篇 地球物理学
  • 22 篇 管理学
    • 15 篇 图书情报与档案管...
    • 9 篇 管理科学与工程(可...
    • 7 篇 工商管理
  • 10 篇 医学
    • 10 篇 基础医学(可授医学...
    • 10 篇 临床医学
    • 8 篇 药学(可授医学、理...
    • 4 篇 公共卫生与预防医...
  • 3 篇 农学
    • 3 篇 作物学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 法学
    • 2 篇 社会学
  • 1 篇 教育学

主题

  • 7 篇 machine learning
  • 5 篇 predictive model...
  • 5 篇 forecasting
  • 4 篇 reinforcement le...
  • 4 篇 deep learning
  • 4 篇 semantics
  • 3 篇 routing
  • 3 篇 deep neural netw...
  • 3 篇 data engineering
  • 3 篇 topology
  • 3 篇 accuracy
  • 3 篇 training
  • 3 篇 recurrent neural...
  • 2 篇 three-dimensiona...
  • 2 篇 image segmentati...
  • 2 篇 optimization
  • 2 篇 data mining
  • 2 篇 adversarial mach...
  • 2 篇 computational mo...
  • 2 篇 syntactics

机构

  • 16 篇 school of data a...
  • 9 篇 key laboratory o...
  • 8 篇 pazhou lab
  • 8 篇 center for data ...
  • 7 篇 key lab. of mach...
  • 7 篇 college of compu...
  • 7 篇 school of comput...
  • 6 篇 center for data ...
  • 6 篇 peng cheng labor...
  • 6 篇 the state key la...
  • 5 篇 software college...
  • 5 篇 data science and...
  • 5 篇 national key lab...
  • 4 篇 faculty of infor...
  • 4 篇 department of ar...
  • 4 篇 center for machi...
  • 4 篇 university of pe...
  • 4 篇 max planck insti...
  • 4 篇 faculty of elect...
  • 4 篇 department of co...

作者

  • 10 篇 xu guandong
  • 9 篇 zheng wei-shi
  • 6 篇 müller klaus-rob...
  • 5 篇 bakas spyridon
  • 5 篇 li qian
  • 5 篇 höhne marina m.-...
  • 5 篇 su qinliang
  • 5 篇 wang liwei
  • 4 篇 yin jianwei
  • 4 篇 xu zenan
  • 4 篇 li hongwei bran
  • 4 篇 velichko yury
  • 4 篇 quan xiaojun
  • 4 篇 linguraru marius...
  • 4 篇 cao longbing
  • 4 篇 miao xiaoye
  • 4 篇 tkatchenko alexa...
  • 4 篇 guandong xu
  • 3 篇 tahon nourel hod...
  • 3 篇 unke oliver t.

语言

  • 128 篇 英文
  • 8 篇 其他
检索条件"机构=Data Science and Machine Intelligence Lab"
136 条 记 录,以下是81-90 订阅
排序:
CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Haiyang Ding, Lihe Dong, Shaocong Shi, Shaoshuai Li, Aoxue Li, Jianan Li, Zhenguo Wang, Liwei Center for Data Science Peking University China Beijing institute of Technology China Max Planck Institute for Informatics Germany Huawei Noah’s Ark Lab China Key Laboratory of Machine Perception MOE School of Intelligence Science and Technology Peking University China Peng Cheng Laboratory China China
We present a novel two-stage fully sparse convolutional 3D object detection framework, named CAGroup3D. Our proposed method first generates some high-quality 3D proposals by leveraging the class-aware local group stra... 详细信息
来源: 评论
Homophily outlier detection in non-IID categorical data
arXiv
收藏 引用
arXiv 2021年
作者: Pang, Guansong Cao, Longbing Chen, Ling Australian Institute for Machine Learning University of Adelaide AdelaideSA5000 Australia University of Technology Sydney Australia Data Science Lab University of Technology Sydney SydneyNSW2007 Australia Center of Artificial Intelligence University of Technology Sydney SydneyNSW2007 Australia
Most of existing outlier detection methods assume that the outlier factors (i.e., outlierness scoring measures) of data entities (e.g., feature values and data objects) are Independent and Identically Distributed (IID... 详细信息
来源: 评论
Enhancing SNN-based Spatio-Temporal Learning: A Benchmark dataset and Cross-Modality Attention Model
arXiv
收藏 引用
arXiv 2024年
作者: Zhou, Shibo Yang, Bo Yuan, Mengwen Jiang, Runhao Yan, Rui Pan, Gang Tang, Huajin Research Center for Data Hub and Security Zhejiang Lab Hangzhou China College of Computer Science and Technology Zhejiang University Hangzhou China Research Center for High Efficiency Computing System Zhejiang Lab Hangzhou China College of Computer Science and Technology Zhejiang University of Technology Hangzhou China The State Key Lab of Brain-Machine Intelligence Zhejiang University Hangzhou China
Spiking Neural Networks (SNNs), renowned for their low power consumption, brain-inspired architecture, and spatio-temporal representation capabilities, have garnered considerable attention in recent years. Similar to ... 详细信息
来源: 评论
MARK MY WORDS: DANGERS OF WATERMARKED IMAGES IN IMAGENET
arXiv
收藏 引用
arXiv 2023年
作者: Bykov, Kirill Müller, Klaus-Robert Höhne, Marina M.-C. Technische Universität Berlin Machine Learning Group Berlin10587 Germany Understandable Machine Intelligence Lab ATB Potsdam14469 Germany BIFOLD Berlin Institute for the Foundations of Learning and Data Berlin10587 Germany Korea University Department of Artificial Intelligence Seoul136-713 Korea Republic of Max Planck Institute for Informatics Saarbrücken66123 Germany Machine Learning Group UiT the Arctic University of Norway Tromsø9037 Norway Department of Computer Science University of Potsdam Potsdam14476 Germany
The utilization of pre-trained networks, especially those trained on ImageNet, has become a common practice in Computer Vision. However, prior research has indicated that a significant number of images in the ImageNet... 详细信息
来源: 评论
HCA-NET: Hierarchical Context Attention Network for Intervertebral Disc Semantic labeling
HCA-NET: Hierarchical Context Attention Network for Interver...
收藏 引用
IEEE International Symposium on Biomedical Imaging
作者: Afshin Bozorgpour Bobby Azad Reza Azad Yury Velichko Ulas Bagci Dorit Merhof Faculty of Informatics and Data Science University of Regensburg Germany Electrical Engineering and Computer Science Department South Dakota State University USA Faculty of Electrical Engineering and Information Technology RWTH Aachen University Germany Machine and Hybrid Intelligence Lab Northwestern University Chicago IL USA Fraunhofer Institute for Digital Medicine MEVIS Germany
Accurate and automated segmentation of intervertebral discs (IVDs) in medical images is crucial for assessing spine-related disorders, such as osteoporosis, vertebral fractures, or IVD herniation. We present HCA-Net, ... 详细信息
来源: 评论
Reinforcement learning based path exploration for sequential explainable recommendation
arXiv
收藏 引用
arXiv 2021年
作者: Li, Yicong Chen, Hongxu Li, Yile Li, Lin Yu, Philip S. Xu, Guandong Data Science and Machine Intelligence Lab Faculty of Engineering and Information Technology University of Technology Sydney SydneyNSW2007 Australia School of Transportation Engineering Tongji University Shanghai200092 China College of Computer Science and Technology Wuhan University of Technology Wuhan430070 China Department of Computer Science University of Illinois at Chicago ChicagoIL60637 United States
Recent advances in path-based explainable recommendation systems have attracted increasing attention thanks to the rich information provided by knowledge graphs. Most existing explainable recommendations only utilize ... 详细信息
来源: 评论
Spatial-Temporal Graph Convolutional Network for Video-Based Person Re-Identification
Spatial-Temporal Graph Convolutional Network for Video-Based...
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: Jinrui Yang Wei-Shi Zheng Qize Yang Ying-Cong Chen Qi Tian School of Data and Computer Science Sun Yat-sen University China Ministry of Education Key Laboratory of Machine Intelligence and Advanced Computing China Peng Cheng Laboratory Shenzhen China Chinese University of Hong Kong Hong Kong China The Huawei Noah's Ark Lab China
While video-based person re-identification (Re-ID) has drawn increasing attention and made great progress in recent years, it is still very challenging to effectively overcome the occlusion problem and the visual ambi... 详细信息
来源: 评论
NC-ALG: Graph-Based Active Learning Under Noisy Crowd
NC-ALG: Graph-Based Active Learning Under Noisy Crowd
收藏 引用
International Conference on data Engineering
作者: Wentao Zhang Yexin Wang Zhenbang You Yang Li Gang Cao Zhi Yang Bin Cui Center for Machine Learning Research Peking University Institute of Advanced Algorithms Research Shanghai National Engineering Labratory for Big Data Analytics and Applications Key Lab of High Confidence Software Technologies Peking University Department of Data Platform TEG Tencent Inc. Beijing Academy of Artificial Intelligence Institute of Computational Social Science Peking University Qingdao
Graph Neural Networks (GNNs) have achieved great success in various data mining tasks but they heavily rely on a large number of annotated nodes, requiring considerable human efforts. Despite the effectiveness of exis... 详细信息
来源: 评论
Causal Disentanglement for Semantics-Aware Intent Learning in Recommendation
arXiv
收藏 引用
arXiv 2022年
作者: Wang, Xiangmeng Li, Qian Yu, Dianer Cui, Peng Wang, Zhichao Xu, Guandong Data Science and Machine Intelligence Lab Faculty of Engineering and Information Technology University of Technology Sydney NSW Australia The School of Electrical Engineering Computing and Mathematical Sciences Curtin University Perth Australia School of Electrical Engineering and Telecommunications University of New South Wales Sydney Australia The Department of Computer Science and Technology Tsinghua University Beijing100084 China
Traditional recommendation models trained on observational interaction data have generated large impacts in a wide range of applications, it faces bias problems that cover users’ true intent and thus deteriorate the ... 详细信息
来源: 评论
A machine Learning and Explainable AI Framework Tailored for Unbalanced Experimental Catalyst Discovery
arXiv
收藏 引用
arXiv 2024年
作者: Semnani, Parastoo Bogojeski, Mihail Bley, Florian Zhang, Zizheng Wu, Qiong Kneib, Thomas Herrmann, Jan Weisser, Christoph Patcas, Florina Müller, Klaus-Robert Machine Learning Group TU Berlin Berlin Germany Berlin Institute for the Foundations of Learning and Data Berlin Germany BASLEARN-TU Berlin BASF Joint Lab for Machine Learning TU Berlin Berlin Germany Georg-August-University Göttingen Statistics and Campus Institute Data Science Göttingen Germany BASF SE Ludwigshafen Germany Max Planck Institute for Informatics Saarbrücken Germany Department of Artificial Intelligence Korea University Seoul Korea Republic of
The successful application of machine learning in catalyst design depends on high-quality and diverse data to ensure effective generalization to novel compositions, thereby aiding in catalyst discovery. However, due t... 详细信息
来源: 评论