咨询与建议

限定检索结果

文献类型

  • 90 篇 期刊文献
  • 31 篇 会议

馆藏范围

  • 121 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 84 篇 工学
    • 56 篇 计算机科学与技术...
    • 53 篇 软件工程
    • 22 篇 生物医学工程(可授...
    • 22 篇 生物工程
    • 16 篇 光学工程
    • 13 篇 信息与通信工程
    • 10 篇 电气工程
    • 9 篇 电子科学与技术(可...
    • 6 篇 控制科学与工程
    • 3 篇 机械工程
    • 3 篇 化学工程与技术
    • 3 篇 交通运输工程
    • 2 篇 建筑学
    • 2 篇 环境科学与工程(可...
  • 57 篇 理学
    • 24 篇 生物学
    • 23 篇 数学
    • 15 篇 物理学
    • 10 篇 统计学(可授理学、...
    • 4 篇 系统科学
    • 3 篇 化学
  • 22 篇 管理学
    • 14 篇 图书情报与档案管...
    • 8 篇 管理科学与工程(可...
    • 6 篇 工商管理
  • 16 篇 医学
    • 16 篇 临床医学
    • 13 篇 基础医学(可授医学...
    • 10 篇 药学(可授医学、理...
    • 6 篇 公共卫生与预防医...
  • 4 篇 法学
    • 4 篇 社会学
  • 4 篇 农学
  • 2 篇 经济学
    • 2 篇 应用经济学
  • 2 篇 教育学
    • 2 篇 教育学

主题

  • 5 篇 machine learning
  • 4 篇 semantics
  • 4 篇 benchmarking
  • 4 篇 forecasting
  • 4 篇 training
  • 3 篇 reinforcement le...
  • 3 篇 deep neural netw...
  • 3 篇 data mining
  • 3 篇 accuracy
  • 2 篇 object detection
  • 2 篇 deep learning
  • 2 篇 magnetic resonan...
  • 2 篇 electroencephalo...
  • 2 篇 contrastive lear...
  • 2 篇 graph neural net...
  • 2 篇 syntactics
  • 2 篇 predictive model...
  • 2 篇 decoding
  • 2 篇 tumors
  • 2 篇 feature selectio...

机构

  • 7 篇 center for data ...
  • 6 篇 school of comput...
  • 5 篇 leeds institute ...
  • 5 篇 center for psych...
  • 5 篇 department of in...
  • 5 篇 institute for pa...
  • 5 篇 department of st...
  • 5 篇 university of pi...
  • 5 篇 arnie charbonnea...
  • 5 篇 ilsbio llc bioba...
  • 5 篇 department of mo...
  • 5 篇 osaka internatio...
  • 5 篇 research departm...
  • 5 篇 department of ve...
  • 5 篇 royal stoke univ...
  • 5 篇 biomedical engin...
  • 5 篇 department of ex...
  • 5 篇 victorian instit...
  • 5 篇 research core ce...
  • 5 篇 department of bi...

作者

  • 11 篇 xu guandong
  • 5 篇 bakas spyridon
  • 5 篇 liu tongliang
  • 5 篇 li qian
  • 5 篇 wang liwei
  • 4 篇 zheng wei-shi
  • 4 篇 han bo
  • 4 篇 cao longbing
  • 4 篇 guandong xu
  • 3 篇 shoeibi afshin
  • 3 篇 li hongwei bran
  • 3 篇 velichko yury
  • 3 篇 wang xiangmeng
  • 3 篇 kangzheng liu
  • 3 篇 yu dianer
  • 3 篇 gorriz juan m.
  • 3 篇 acharya u. rajen...
  • 3 篇 zhang sixiao
  • 3 篇 di he
  • 3 篇 bilello michel

语言

  • 112 篇 英文
  • 7 篇 其他
  • 1 篇 中文
检索条件"机构=Data Science and Machine Intelligence Lab University of Technology Sydney"
121 条 记 录,以下是1-10 订阅
排序:
TagGAN: A Generative Model for data Tagging
arXiv
收藏 引用
arXiv 2025年
作者: Nawaz, Muhammad Nasir, Basma Zia, Tehseen Hussain, Zawar Moreira, Catarina Data Science Institute University of Technology Sydney Australia COMSATS University Islamabad Pakistan Medical Imaging and Diagnostics Lab National Center of Artificial Intelligence Pakistan Macquarie University Sydney Australia
Precise identification and localization of disease-specific features at the pixel-level are particularly important for early diagnosis, disease progression monitoring, and effective treatment in medical image analysis... 详细信息
来源: 评论
Applicability of the Minimal Dominating Set for Influence Maximisation in Multilayer Networks
arXiv
收藏 引用
arXiv 2025年
作者: Czuba, Michal Jia, Mingshan Bródka, Piotr Musial, Katarzyna Department of Artificial Intelligence Wroclaw University of Science and Technology 27 wybrzeze Wyspiańskiego st Wroclaw50-370 Poland Complex Adaptive Systems Lab Data Science Institute School of Computer Science University of Technology Sydney UltimoNSW2007 Australia
The minimal dominating set (MDS) is a well-established concept in network controllability and has been successfully applied in various domains, including sensor placement, network resilience, and epidemic containment.... 详细信息
来源: 评论
Rethinking attention mechanism for enhanced pedestrian attribute recognition
收藏 引用
Neurocomputing 2025年 639卷
作者: Wu, Junyi Huang, Yan Gao, Min Niu, Yuzhen Chen, Yuzhong Wu, Qiang Fujian Key Laboratory of Network Computing and Intelligent Information Processing College of Computer and Data Science Fuzhou University Fujian Fuzhou350108 China Engineering Research Center of BigData Intelligence Ministry of Education Fujian Fuzhou350108 China Australian Artificial Intelligence Institute University of Technology Sydney SydneyNSW2007 Australia Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information College of Physics and Information Engineering Fuzhou University Fujian Fuzhou350108 China School of Electrical and Data Engineering University of Technology Sydney SydneyNSW2007 Australia
Pedestrian Attribute Recognition (PAR) plays a crucial role in various computer vision applications, demanding precise and reliable identification of attributes from pedestrian images. Traditional PAR methods, though ... 详细信息
来源: 评论
High-order diversity feature learning for pedestrian attribute recognition
收藏 引用
Neural Networks 2025年 188卷 107463页
作者: Wu, Junyi Huang, Yan Gao, Min Niu, Yuzhen Chen, Yuzhong Wu, Qiang Key Laboratory of Network Computing and Intelligent Information Processing College of Computer and Data Science Fuzhou University Fujian Fuzhou China Australian Artificial Intelligence Institute University of Technology Sydney NSW Australia Fujian Key Lab for Intelligent Processing and Wireless Transmission of Media Information College of Physics and Information Engineering Fuzhou University Fujian Fuzhou China School of Electrical and Data Engineering University of Technology Sydney NSW Australia
Pedestrian attribute recognition (PAR) involves accurately identifying multiple attributes present in pedestrian images. There are two main approaches for PAR: part-based method and attention-based method. The former ... 详细信息
来源: 评论
Empowering LLMs with Logical Reasoning: A Comprehensive Survey
arXiv
收藏 引用
arXiv 2025年
作者: Cheng, Fengxiang Li, Haoxuan Liu, Fenrong van Rooij, Robert Zhang, Kun Lin, Zhouchen Institute for Logic Language and Computation University of Amsterdam Netherlands Center for Data Science Peking University China Machine Learning Department MBZUAI Department of Philosophy Tsinghua University China Department of Philosophy CMU United States Institute for Artificial Intelligence Peking University China Peng Cheng Laboratory China National Key Lab of General AI School of Intelligence Science and Technology Peking University China
Large language models (LLMs) have achieved remarkable successes on various natural language tasks. However, recent studies have found that there are still significant challenges to the logical reasoning abilities of L... 详细信息
来源: 评论
Cross-Domain Animal Pose Estimation with Skeleton Anomaly-Aware Learning
收藏 引用
IEEE Transactions on Circuits and Systems for Video technology 2025年
作者: Han, Le Chen, Kaixuan Zhao, Lei Jiang, Yangbo Wang, Pengfei Zheng, Nenggan Zhejiang Hangzhou310007 China Zhejiang University College of Computer Science and Technology Zhejiang Hangzhou310007 China Zhejiang University State Key Laboratory of Blockchain and Data Security Zhejiang Hangzhou310007 China Institute of Blockchain and Data Security. China Zhejiang University School of Software Technology Ningbo China Zhejiang University State Key Lab of Brain-Machine Intelligence Hangzhou310007 China Zhejiang Provincial Government ZJU Collaborative Innovation Center for Artificial Intelligence by MOE Hangzhou310007 China Bengbu University School of Computer and Information Engineering Bengbu233030 China
Animal pose estimation is often constrained by the scarcity of annotations and the diversity of scenarios and species. The pseudo-label generation based unsupervised domain adaptation paradigm, which discriminates the... 详细信息
来源: 评论
Deep learning models for enhanced in-field maize leaf disease diagnosis
Machine Learning with Applications
收藏 引用
machine Learning with Applications 2025年 20卷
作者: Joyce Nakatumba-Nabende Sudi Murindanyi Department of Computer Science College of Computing and Information Sciences Makerere University Uganda Makerere Center for Artificial Intelligence and Data Science Makerere University Uganda Marconi Machine Learning Lab College of Engineering Design Art and Technology Makerere University Uganda
Maize leaf diseases significantly threaten crop yields, and there is need for accurate, and accessible diagnostic tools. This research addresses this need by developing and evaluating deep learning (DL) and machine le... 详细信息
来源: 评论
Can Language Models Serve as Temporal Knowledge Bases?
Can Language Models Serve as Temporal Knowledge Bases?
收藏 引用
2022 Findings of the Association for Computational Linguistics: EMNLP 2022
作者: Zhao, Ruilin Zhao, Feng Xu, Guandong Zhang, Sixiao Jin, Hai National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Huazhong University of Science and Technology China Data Science and Machine Intelligence Lab University of Technology Sydney Sydney Australia
Recent progress regarding the use of language models (LMs) as knowledge bases (KBs) has shown that language models can act as structured knowledge bases for storing relational facts. However, most existing works only ... 详细信息
来源: 评论
RETIA: Relation-Entity Twin-Interact Aggregation for Temporal Knowledge Graph Extrapolation  39
RETIA: Relation-Entity Twin-Interact Aggregation for Tempora...
收藏 引用
39th IEEE International Conference on data Engineering, ICDE 2023
作者: Liu, Kangzheng Zhao, Feng Xu, Guandong Wang, Xianzhi Jin, Hai Huazhong University of Science and Technology National Engineering Research Center for Big Data Technology and System Services Computing Technology and System Lab Cluster and Grid Computing Lab School of Computer Science and Technology Wuhan China University of Technology Sydney Data Science and Machine Intelligence Lab Sydney Australia
Temporal knowledge graph (TKG) extrapolation aims to predict future unknown events (facts) based on historical information, and has attracted considerable attention due to its great practical significance. Accurate re... 详细信息
来源: 评论
Efficient image representation for object recognition via pivots selection
收藏 引用
Frontiers of Computer science 2015年 第3期9卷 383-391页
作者: Bojun XIE Yi LIU HuiZHANG Jian YU Beijing Key Lab of Traffic Data Analysis and Mining School of Computer and Information Technology Beijing Jiaotong University Beijing 100044 China Key Lab of Machine Learning and Computational Intelligence College of Mathematics and Computer Science Hebei University Baoding 071000 China
Patch-level features are essential for achieving good performance in computer vision tasks. Besides well- known pre-defined patch-level descriptors such as scalein- variant feature transform (SIFT) and histogram of ... 详细信息
来源: 评论