咨询与建议

限定检索结果

文献类型

  • 698 篇 期刊文献
  • 545 篇 会议
  • 3 册 图书

馆藏范围

  • 1,246 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 754 篇 工学
    • 517 篇 计算机科学与技术...
    • 445 篇 软件工程
    • 166 篇 生物工程
    • 133 篇 信息与通信工程
    • 107 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 63 篇 电气工程
    • 51 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 31 篇 机械工程
    • 31 篇 仪器科学与技术
    • 26 篇 网络空间安全
    • 25 篇 建筑学
  • 562 篇 理学
    • 318 篇 数学
    • 175 篇 生物学
    • 169 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 62 篇 系统科学
  • 182 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 89 篇 医学
    • 72 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 30 篇 法学
    • 28 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 18 篇 农学
  • 12 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 69 篇 accuracy
  • 67 篇 deep learning
  • 39 篇 training
  • 33 篇 convolutional ne...
  • 32 篇 real-time system...
  • 29 篇 feature extracti...
  • 27 篇 predictive model...
  • 24 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 22 篇 artificial intel...
  • 21 篇 reinforcement le...
  • 21 篇 medical services
  • 21 篇 machine learning...
  • 20 篇 diseases
  • 20 篇 forecasting
  • 19 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 computational mo...

机构

  • 60 篇 machine learning...
  • 48 篇 department of st...
  • 41 篇 center for data ...
  • 37 篇 center for machi...
  • 35 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 18 篇 munich center fo...
  • 18 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 munich data scie...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 12 篇 division of arti...
  • 12 篇 machine learning...
  • 12 篇 departments of c...

作者

  • 70 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 16 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 li zhang

语言

  • 749 篇 英文
  • 496 篇 其他
  • 2 篇 中文
检索条件"机构=Data Science and Machine Learning"
1246 条 记 录,以下是1111-1120 订阅
排序:
Path length bounds for gradient descent and flow
arXiv
收藏 引用
arXiv 2019年
作者: Gupta, Chirag Balakrishnan, Sivaraman Ramdas, Aaditya Machine Learning Department Carnegie Mellon University United States Department of Statistics and Data Science Carnegie Mellon University United States
We derive bounds on the path length ζof gradient descent (GD) and gradient flow (GF) curves for various classes of smooth convex and nonconvex functions. Among other results, we prove that: (a) if the iterates are li... 详细信息
来源: 评论
Cosmological N-body simulations: a challenge for scalable generative models
收藏 引用
Computational Astrophysics and Cosmology 2019年 第1期6卷 1-17页
作者: Perraudin, Nathanaël Srivastava, Ankit Lucchi, Aurelien Kacprzak, Tomasz Hofmann, Thomas Réfrégier, Alexandre Swiss Data Science Center ETH Zurich Zurich Switzerland Institute for Machine Learning ETH Zurich Zurich Switzerland Institute for Particle Physics and Astrophysics ETH Zurich Zurich Switzerland
Deep generative models, such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAs) have been demonstrated to produce images of high visual quality. However, the existing hardware on which these m...
来源: 评论
The medical algorithmic audit (vol 4, pg e384, 2022)
收藏 引用
LANCET DIGITAL HEALTH 2022年 第6期4卷 E405-E405页
作者: Liu, X. Glocker, B. McCradden, M. M. Ghassemi, M. Denniston, A. K. Oakden-Rayner, L. Academic Unit of Ophthalmology Institute of Inflammation and Ageing College of Medical and Dental Sciences University of Birmingham UK Department of Ophthalmology University Hospitals Birmingham NHS Foundation Trust Birmingham UK Moorfields Eye Hospital NHS Foundation Trust London UK Health Data Research UK London UK Birmingham Health Partners Centre for Regulatory Science and Innovation University of Birmingham Birmingham UK Biomedical Image Analysis Group Department of Computing Imperial College London London UK The Hospital for Sick Children Toronto ON Canada Dalla Lana School of Public Health Toronto ON Canada Institute for Medical Engineering and Science and Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Cambridge MA USA National Institute of Health Research Biomedical Research Centre for Ophthalmology Moorfields Hospital London NHS Foundation Trust London UK University College London Institute of Ophthalmology London UK Australian Institute for Machine Learning University of Adelaide Adelaide SA Australia. lauren.oakden-rayner@adelaide.edu.au
Artificial intelligence systems for health care, like any other medical device, have the potential to fail. However, specific qualities of artificial intelligence systems, such as the tendency to learn spurious correl...
来源: 评论
Sharpening the dark matter signature in gravitational waveforms II: Numerical simulations with the NbodyIMRI code
arXiv
收藏 引用
arXiv 2024年
作者: Kavanagh, Bradley J. Karydas, Theophanes K. Bertone, Gianfranco Di Cintio, Pierfrancesco Pasquato, Mario Av. de Los Castros s/n Santander39005 Spain Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics University of Amsterdam Science Park 904 Amsterdam1098 XH Netherlands 50022 Italy INAF-Osservatorio Astronomico di Arcetri Largo Enrico Fermi 5 Firenze50125 Italy INFN-Sezione di Firenze via G. Sansone 1 Sesto Fiorentino50022 Italy Département de Physique Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Canada Mila – Quebec Artificial Intelligence Institute 6666 Rue Saint-Urbain Montréal Canada Ciela – Montréal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Dipartimento di Fisica e Astronomia Università di Padova Vicolo dell’Osservatorio 5 Padova Italy Istituto Nazionale di Fisica Nucleare Padova Via Marzolo 8 Padova Italy
Future gravitational wave observatories can probe dark matter by detecting the dephasing in the waveform of binary black hole mergers induced by dark matter overdensities. Such a detection hinges on the accurate model... 详细信息
来源: 评论
machine learning to detect recent recreational drug use in intensive cardiac care units
收藏 引用
Archives of Cardiovascular Diseases 2025年 第5期118卷 277-286页
作者: El Bèze, Nathan Hamzi, Kenza Henry, Patrick Trimaille, Antonin El Ouahidi, Amine Zakine, Cyril Nallet, Olivier Delmas, Clément Aboyans, Victor Goralski, Marc Albert, Franck Bonnefoy-Cudraz, Eric Bochaton, Thomas Schurtz, Guillaume Lim, Pascal Lequipar, Antoine Gonçalves, Trecy Gall, Emmanuel Pommier, Thibaut Lemarchand, Léo Meune, Christophe Azzakani, Sonia Bouleti, Claire Amar, Jonas Dillinger, Jean-Guillaume Steg, P. Gabriel Vicaut, Eric Toupin, Solenn Pezel, Théo Inserm MASCOT – UMRS 942 Department of Cardiology University Hospital of Lariboisière Université Paris-Cité AP–HP Paris 75010 France Multimodality Imaging Research for Analysis Core Laboratory: Artificial Intelligence (MIRACL.ai) Department of Data Science Machine Learning and Artificial Intelligence in Health University Hospital of Lariboisière AP–HP Paris 75010 France Department of Cardiovascular Medicine Nouvel Hôpital Civil Strasbourg University Hospital Strasbourg 67000 France Department of Cardiology University Hospital of Brest Brest 29609 France NCT+ Saint-Cyr-sur-Loire 37540 France Department of Cardiology Hôpital Montfermeil Montfermeil 93370 France Department of Cardiology Rangueil University Hospital Toulouse 31000 France Department of Cardiology University Hospital of Limoges Limoges 87000 France Department of Cardiology Centre Hospitalier d'Orléans Orléans 45100 France Department of Cardiology Centre Hospitalier de Chartres Le Coudray 28630 France Intensive Cardiological Care Division Louis-Pradel Hospital Hospices Civils de Lyon Bron 69500 France Department of Cardiology University Hospital of Lille Lille 59000 France Intensive Cardiac Care Unit Henri-Mondor University Hospital Créteil 94000 France Department of Cardiology Dijon University Hospital Dijon 21000 France Department of Cardiology and Vascular Diseases CHU of Rennes Rennes 35000 France Department of Cardiology Hôpital Avicenne AP–HP Bobigny 93000 France Department of Cardiology Clinical Investigation Centre (Inserm 1204) University Hospital of Poitiers Poitiers 86000 France Inserm_U1148/LVTS hôpital Bichat université Paris-Cité AP–HP Paris 75877 France Unité de recherche clinique hôpital Fernand-Widal AP–HP Paris 75010 France
Background: Although recreational drug use is a strong risk factor for acute cardiovascular events, systematic testing is currently not performed in patients admitted to intensive cardiac care units, with a risk of un... 详细信息
来源: 评论
Automating airborne pollen classification: Identifying and interpreting hard samples for classifiers
收藏 引用
Heliyon 2025年 第2期11卷 e41656页
作者: Milling, Manuel Rampp, Simon D.N. Triantafyllopoulos, Andreas Plaza, Maria P. Brunner, Jens O. Traidl-Hoffmann, Claudia Schuller, Björn W. Damialis, Athanasios CHI – Chair of Health Informatics MRI Technical University of Munich Munich Germany MCML–Munich Center for Machine Learning Germany EIHW – Chair of Embedded Intelligence for Health Care & Wellbeing University of Augsburg Augsburg Germany Institute of Environmental Medicine and Integrative Health Faculty of Medicine University Clinic of Augsburg & University of Augsburg Augsburg Germany Institute of Environmental Medicine Helmholtz Center Munich German Research Center for Environmental Health Germany Faculty of Business and Economics and Faculty of Medicine University of Augsburg Augsburg Germany Department of Technology Management and Economics Technical University of Denmark Denmark Next Generation Technology Region Zealand Denmark Christine Kühne Center for Allergy Research and Education Davos Switzerland MDSI–Munich Data Science Institute Germany GLAM–the Group on Language Audio & Music Imperial College London London United Kingdom Terrestrial Ecology and Climate Change Department of Ecology School of Biology Faculty of Sciences Aristotle University of Thessaloniki Thessaloniki Greece
Deep-learning-based classification of pollen grains has been a major driver towards automatic monitoring of airborne pollen. Yet, despite an abundance of available datasets, little effort has been spent to investigate... 详细信息
来源: 评论
Explaining bayesian neural networks
arXiv
收藏 引用
arXiv 2021年
作者: Bykov, Kirill Höhne, Marina M.-C. Creosteanu, Adelaida Müller, Klaus-Robert Machine Learning Group Technische Universität Berlin Marchstr. 23 Berlin10587 Germany Department of Artificial Intelligence Korea University Anam-dong Seongbuk-gu Seoul02841 Korea Republic of Max Planck Institute for Informatics Stuhlsatzenhausweg 4 Saarbrücken66123 Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany Google Research Brain team Berlin Germany Department of Computer Science TU Kaiserslautern Germany Heidelberg Germany Institute of Pathology Charite – Universitätsmedizin Berlin Berlin Germany Aignostics Berlin Germany RIKEN AIP 1-4-1 Nihonbashi Chuo-ku Tokyo Japan
—To make advanced learning machines such as Deep Neural Networks (DNNs) more transparent in decision making, explainable AI (XAI) aims to provide interpretations of DNNs’ predictions. These interpretations are usual... 详细信息
来源: 评论
Sharpening the dark matter signature in gravitational waveforms. II. Numerical simulations
收藏 引用
Physical Review D 2025年 第6期111卷 063071-063071页
作者: Bradley J. Kavanagh Theophanes K. Karydas Gianfranco Bertone Pierfrancesco Di Cintio Mario Pasquato Instituto de Física de Cantabria (IFCA UC-CSIC) Avenue de Los Castros s 39005 Santander Spain Gravitation Astroparticle Physics Amsterdam (GRAPPA) Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics University of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands Consiglio Nazionale delle Ricerche Istituto dei Sistemi Complessi (CNR-ISC) via Madonna del Piano 17 50022 Sesto Fiorentino (FI) Italy INAF-Osservatorio Astronomico di Arcetri Largo Enrico Fermi 5 50125 Firenze Italy INFN-Sezione di Firenze Via Giovanni Sansone 1 50022 Sesto Fiorentino Italy Département de Physique Université de Montréal 1375 Avenue Thérèse-Lavoie-Roux Montréal Canada Mila—Quebec Artificial Intelligence Institute 6666 Rue Saint-Urbain Montréal Canada Ciela—Montréal Institute for Astrophysical Data Analysis and Machine Learning Montréal Canada Dipartimento di Fisica e Astronomia Università di Padova Vicolo dell’Osservatorio 5 Padova Italy Istituto Nazionale di Fisica Nucleare Padova Via Marzolo 8 Padova Italy
Future gravitational wave observatories can probe dark matter by detecting the dephasing in the waveform of binary black hole mergers induced by dark matter overdensities. Such a detection hinges on the accurate model...
来源: 评论
A study on the uncertainty of convolutional layers in deep neural networks
arXiv
收藏 引用
arXiv 2020年
作者: Shen, Haojing Chen, Sihong Wang, Ran Big Data Institute College of Computer Science and Software Engineering Guangdong Key Lab. of Intelligent Information Processing Shenzhen University ShenzhenGuangdong518060 China College of Mathematics and Statistics Shenzhen University Shenzhen518060 China Shenzhen Key Laboratory of Advanced Machine Learning and Applications Shenzhen University Shenzhen518060 China
This paper shows a Min-Max property existing in the connection weights of the convolutional layers in a neural network structure, i.e., the LeNet. Specifically, the Min-Max property means that, during the back propaga... 详细信息
来源: 评论
Synchronized sensor insoles for clinical gait analysis in home-monitoring applications
收藏 引用
Current Directions in Biomedical Engineering 2018年 第1期4卷 433-437页
作者: Roth, Nils Martindale, Christine F. Gaßner, Heiko Kohl, Zacharias Klucken, Jochen Eskofer, Bjoern M. Machine Learning and Data Analytics Lab. Department of Computer Science Friedrich-Alexander-University Erlangen-Nürnberg (FAU) Erlangen Germany Department of Molecular Neurology University Hospital Erlangen Germany
Wearable sensor systems are of increasing interest in clinical gait analysis. However, little information about gait dynamics of patients under free living conditions is available, due to the challenges of integrating... 详细信息
来源: 评论