咨询与建议

限定检索结果

文献类型

  • 698 篇 期刊文献
  • 545 篇 会议
  • 3 册 图书

馆藏范围

  • 1,246 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 754 篇 工学
    • 517 篇 计算机科学与技术...
    • 445 篇 软件工程
    • 166 篇 生物工程
    • 133 篇 信息与通信工程
    • 107 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 63 篇 电气工程
    • 51 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 31 篇 机械工程
    • 31 篇 仪器科学与技术
    • 26 篇 网络空间安全
    • 25 篇 建筑学
  • 562 篇 理学
    • 318 篇 数学
    • 175 篇 生物学
    • 169 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 62 篇 系统科学
  • 182 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 89 篇 医学
    • 72 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 30 篇 法学
    • 28 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 18 篇 农学
  • 12 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 69 篇 accuracy
  • 67 篇 deep learning
  • 39 篇 training
  • 33 篇 convolutional ne...
  • 32 篇 real-time system...
  • 29 篇 feature extracti...
  • 27 篇 predictive model...
  • 24 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 22 篇 artificial intel...
  • 21 篇 reinforcement le...
  • 21 篇 medical services
  • 21 篇 machine learning...
  • 20 篇 diseases
  • 20 篇 forecasting
  • 19 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 computational mo...

机构

  • 60 篇 machine learning...
  • 48 篇 department of st...
  • 41 篇 center for data ...
  • 37 篇 center for machi...
  • 35 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 18 篇 munich center fo...
  • 18 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 munich data scie...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 12 篇 division of arti...
  • 12 篇 machine learning...
  • 12 篇 departments of c...

作者

  • 70 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 16 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 li zhang

语言

  • 749 篇 英文
  • 496 篇 其他
  • 2 篇 中文
检索条件"机构=Data Science and Machine Learning"
1246 条 记 录,以下是1141-1150 订阅
排序:
Analyzing the Structure of Attention in a Transformer Language Model
arXiv
收藏 引用
arXiv 2019年
作者: Vig, Jesse Belinkov, Yonatan Palo Alto Research Center Machine Learning and Data Science Group Interaction and Analytics Lab Palo AltoCA United States Harvard John A. Paulson School of Engineering and Applied Sciences MIT Computer Science and Artificial Intelligence Laboratory CambridgeMA United States
The Transformer is a fully attention-based alternative to recurrent networks that has achieved state-of-the-art results across a range of NLP tasks. In this paper, we analyze the structure of attention in a Transforme... 详细信息
来源: 评论
Incremental intervention effects in studies with dropout and many timepoints
arXiv
收藏 引用
arXiv 2019年
作者: Kim, Kwangho Kennedy, Edward H. Naimi, Ashley I. Department of Statistics & Data Science Machine Learning Department Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Statistics & Data Science Carnegie Mellon University 5000 Forbes Ave PittsburghPA15213 United States Department of Epidemiology Rollins School of Public Health Emory University AtlantaGA United States
Modern longitudinal studies collect feature data at many timepoints, often of the same order of sample size. Such studies are typically affected by dropout and positivity violations. We tackle these problems by genera...
来源: 评论
L1 Trend Filtering: A Modern Statistical Tool for Time-Domain Astronomy and Astronomical Spectroscopy
arXiv
收藏 引用
arXiv 2019年
作者: Politsch, Collin A. Cisewski-Kehe, Jessi Croft, Rupert A.C. Wasserman, Larry Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 Machine Learning Department Carnegie Mellon University PittsburghPA15213 Department of Statistics and Data Science Yale University New HavenCT06520 Department of Physics Carnegie Mellon University PittsburghPA15213 McWilliams Center for Cosmology Carnegie Mellon University PittsburghPA15213
The problem of estimating a one-dimensional signal possessing mixed degrees of smoothness is ubiquitous in time-domain astronomy and astronomical spectroscopy. For example, in the time domain, an astronomical object m... 详细信息
来源: 评论
Optimization of smooth functions with noisy observations: Local minimax rates
arXiv
收藏 引用
arXiv 2018年
作者: Wang, Yining Balakrishnan, Sivaraman Singh, Aarti Machine Learning Department Carnegie Mellon University Department of Statistics and Data Science Carnegie Mellon University
We consider the problem of global optimization of an unknown non-convex smooth function with zeroth-order feedback. In this setup, an algorithm is allowed to adaptively query the underlying function at different locat... 详细信息
来源: 评论
Augmenting Adjusted Plus-Minus in Soccer with FIFA Ratings
arXiv
收藏 引用
arXiv 2018年
作者: Matano, Francesca Richardson, Lee F. Pospisil, Taylor Eubanks, Collin Qin, Jining Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University
In basketball and hockey, state-of-the-art player value statistics are often variants of Adjusted Plus-Minus (APM). But APM hasn’t had the same impact in soccer, since soccer games are low scoring with a low number o... 详细信息
来源: 评论
Cautious deep learning
arXiv
收藏 引用
arXiv 2018年
作者: Hechtlinger, Yotam Póczos, Barnabás Wasserman, Larry Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University
Most classifiers operate by selecting the maximum of an estimate of the conditional distribution p(yjx) where x stands for the features of the instance to be classified and y denotes its label. This often results in a... 详细信息
来源: 评论
Analysis of a mode clustering diagram
arXiv
收藏 引用
arXiv 2018年
作者: Verdinelli, Isabella Wasserman, Larry Department of Statistics and Data Science Carnegie Mellon University Machine Learning Department Carnegie Mellon University
Mode-based clustering methods define clusters to be the basins of attraction of the modes of a density estimate. The most common version is mean shift clustering which uses a gradient ascent algorithm to find the basi...
来源: 评论
Cosmological N-body simulations: A challenge for scalable generative models
arXiv
收藏 引用
arXiv 2019年
作者: Perraudin, Nathanaël Srivastava, Ankit Lucchi, Aurelien Kacprzak, Tomasz Hofmann, Thomas Réfrégier, Alexandre Swiss Data Science Center ETH Zurich Universitätstrasse 25 Zurich8006 Switzerland Institute for Particle Physics and Astrophysics ETH Zurich Wolfgang-Pauli-Str. 27 Zurich8093 Switzerland Institute for Machine Learning ETH Zurich Universitätstrasse 6 Zurich8006 Switzerland
Deep generative models, such as Generative Adversarial Networks (GANs) or Variational Autoencoders (VAs) have been demonstrated to produce images of high visual quality. However, the existing hardware on which these m... 详细信息
来源: 评论
Nonparametric density estimation with adversarial losses
arXiv
收藏 引用
arXiv 2018年
作者: Singh, Shashank Uppal, Ananya Li, Boyue Li, Chun-Liang Zaheer, Manzil Póczos, Barnabás Machine Learning Department Department of Statistics and Data Science Department of Mathematical Sciences Language Technologies Institute Carnegie Mellon University
We study minimax convergence rates of nonparametric density estimation under a large class of loss functions called "adversarial losses", which, besides classical Lp losses, includes maximum mean discrepancy... 详细信息
来源: 评论
Realization of spatial sparseness by deep ReLU nets with massive data
arXiv
收藏 引用
arXiv 2019年
作者: Chui, Charles K. Lin, Shao-Bo Zhang, Bo Zhou, Ding-Xuan Department of Mathematics Hong Kong Baptist University Department of Statistics Stanford University CA94305 United States Center of Intelligent Decision-making and Machine Learning School of Management Xi'an Jiaotong University Xi'an China School of Data Science Department of Mathematics City University of Hong Kong Hong Kong
The great success of deep learning poses urgent challenges for understanding its working mechanism and rationality. The depth, structure, and massive size of the data are recognized to be three key ingredients for dee... 详细信息
来源: 评论