咨询与建议

限定检索结果

文献类型

  • 698 篇 期刊文献
  • 545 篇 会议
  • 3 册 图书

馆藏范围

  • 1,246 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 754 篇 工学
    • 517 篇 计算机科学与技术...
    • 445 篇 软件工程
    • 166 篇 生物工程
    • 133 篇 信息与通信工程
    • 107 篇 控制科学与工程
    • 99 篇 生物医学工程(可授...
    • 71 篇 光学工程
    • 63 篇 电气工程
    • 51 篇 安全科学与工程
    • 48 篇 电子科学与技术(可...
    • 47 篇 化学工程与技术
    • 31 篇 机械工程
    • 31 篇 仪器科学与技术
    • 26 篇 网络空间安全
    • 25 篇 建筑学
  • 562 篇 理学
    • 318 篇 数学
    • 175 篇 生物学
    • 169 篇 统计学(可授理学、...
    • 130 篇 物理学
    • 66 篇 化学
    • 62 篇 系统科学
  • 182 篇 管理学
    • 96 篇 管理科学与工程(可...
    • 88 篇 图书情报与档案管...
    • 56 篇 工商管理
  • 89 篇 医学
    • 72 篇 临床医学
    • 63 篇 基础医学(可授医学...
    • 38 篇 公共卫生与预防医...
    • 33 篇 药学(可授医学、理...
  • 30 篇 法学
    • 28 篇 社会学
  • 24 篇 经济学
    • 24 篇 应用经济学
  • 18 篇 农学
  • 12 篇 教育学
  • 2 篇 文学
  • 2 篇 军事学

主题

  • 73 篇 machine learning
  • 69 篇 accuracy
  • 67 篇 deep learning
  • 39 篇 training
  • 33 篇 convolutional ne...
  • 32 篇 real-time system...
  • 29 篇 feature extracti...
  • 27 篇 predictive model...
  • 24 篇 image segmentati...
  • 22 篇 reviews
  • 22 篇 decision making
  • 22 篇 artificial intel...
  • 21 篇 reinforcement le...
  • 21 篇 medical services
  • 21 篇 machine learning...
  • 20 篇 diseases
  • 20 篇 forecasting
  • 19 篇 support vector m...
  • 17 篇 optimization
  • 16 篇 computational mo...

机构

  • 60 篇 machine learning...
  • 48 篇 department of st...
  • 41 篇 center for data ...
  • 37 篇 center for machi...
  • 35 篇 munich center fo...
  • 20 篇 australian insti...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 vector institute...
  • 18 篇 munich center fo...
  • 18 篇 machine learning...
  • 15 篇 beijing internat...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 munich data scie...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 12 篇 division of arti...
  • 12 篇 machine learning...
  • 12 篇 departments of c...

作者

  • 70 篇 ramdas aaditya
  • 22 篇 prateek verma
  • 21 篇 zhu xiao xiang
  • 20 篇 müller klaus-rob...
  • 18 篇 von lilienfeld o...
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 16 篇 schuller björn w...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 patil pratik
  • 13 篇 krahmer felix
  • 12 篇 aditya barhate
  • 12 篇 triantafyllopoul...
  • 12 篇 wang liwei
  • 11 篇 li zhang

语言

  • 749 篇 英文
  • 496 篇 其他
  • 2 篇 中文
检索条件"机构=Data Science and Machine Learning"
1246 条 记 录,以下是1161-1170 订阅
排序:
Why is the Winner the Best?
Why is the Winner the Best?
收藏 引用
Conference on Computer Vision and Pattern Recognition (CVPR)
作者: M. Eisenmann A. Reinke V. Weru M. D. Tizabi F. Isensee T. J. Adler S. Ali V. Andrearczyk M. Aubreville U. Baid S. Bakas N. Balu S. Bano J. Bernal S. Bodenstedt A. Casella V. Cheplygina M. Daum M. De Bruijne A. Depeursinge R. Dorent J. Egger D. G. Ellis S. Engelhardt M. Ganz N. Ghatwary G. Girard P. Godau A. Gupta L. Hansen K. Harada M. Heinrich N. Heller A. Hering A. Huaulmé P. Jannin A. E. Kavur O. Kodym M. Kozubek J. Li H. Li J. Ma C. Martín-Isla B. Menze A. Noble V. Oreiller N. Padoy S. Pati K. Payette T. Rädsch J. Rafael-Patiño V. Singh Bawa S. Speidel C. H. Sudre K. Van Wijnen M. Wagner D. Wei A. Yamlahi M. H. Yap C. Yuan M. Zenk A. Zia D. Zimmerer D. Aydogan B. Bhattarai L. Bloch R. Brüngel J. Cho C. Choi Q. Dou I. Ezhov C. M. Friedrich C. Fuller R. R. Gaire A. Galdran Á. García Faura M. Grammatikopoulou S. Hong M. Jahanifar I. Jang A. Kadkhodamohammadi I. Kang F. Kofler S. Kondo H. Kuijf M. Li M. Luu T. Martinčič P. Morais M. A. Naser B. Oliveira D. Owen S. Pang J. Park S. Park S. Płotka E. Puybareau N. Rajpoot K. Ryu N. Saeed A. Shephard P. Shi D. Štepec R. Subedi G. Tochon H. R. Torres H. Urien J. L. Vilaça K. A. Wahid H. Wang J. Wang L. Wang X. Wang B. Wiestler M. Wodzinski F. Xia J. Xie Z. Xiong S. Yang Y. Yang Z. Zhao K. Maier-Hein P. F. Jäger A. Kopp-Schneider L. Maier-Hein Division of Intelligent Medical Systems German Cancer Research Center (DKFZ) Heidelberg Germany Helmholtz Imaging German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Mathematics and Computer Science Heidelberg University Heidelberg Germany Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany Division of Medical Image Computing German Cancer Research Center (DKFZ) Heidelberg Germany Faculty of Engineering and Physical Sciences School of Computing University of Leeds Leeds UK Institute of Informatics School of Management HES-SO Valais-Wallis University of Applied Sciences and Arts Western Switzerland Sierre Switzerland Department of Nuclear Medicine and Molecular Imaging Lausanne University Hospital Lausanne Switzerland Technische Hochschule Ingolstadt Ingolstadt Germany Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA) University of Pennsylvania Philadelphia PA USA Department of Pathology and Laboratory Medicine Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology Perelman School of Medicine University of Pennsylvania Philadelphia PA USA Department of Radiology University of Washington Seattle WA USA Department of Computer Science Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS) University College London London UK Universitat Autònoma de Barcelona & Computer Vision Center Barcelona Spain Division of Translational Surgical Oncology National Center for Tumor Diseases (NCT/UCC) Dresden Dresden Germany Department of Advanced Robotics Istituto Italiano di Tecnologia Italy Department of Electronics Information and Bioengineering Politecnico di Milano Milan Italy IT University of Copenhagen Copenhagen Denmark Department of General Visceral and Transplantation Surgery Heidelberg University Hospital Heidelberg Germany Department of Radiology and Nuc
International benchmarking competitions have become fundamental for the comparative performance assessment of image analysis methods. However, little attention has been given to investigating what can be learnt from t...
来源: 评论
Think-aloud interviews: A tool for exploring student statistical reasoning
arXiv
收藏 引用
arXiv 2019年
作者: Reinhart, Alex Evans, Ciaran Luby, Amanda Orellana, Josue Meyer, Mikaela Wieczorek, Jerzy Elliott, Peter Burckhardt, Philipp Nugent, Rebecca Department of Statistics & Data Science Carnegie Mellon University United States Department of Mathematics and Statistics Wake Forest University United States Department of Mathematics & Statistics Swarthmore College United States Center for the Neural Basis of Cognition Machine Learning Department Carnegie Mellon University United States Department of Statistics Colby College United States
Think-aloud interviews have been a valuable but underused tool in statistics education research. Think-alouds, in which students narrate their reasoning in real time while solving problems, differ in important ways fr... 详细信息
来源: 评论
Nonparametric density estimation with adversarial losses  18
Nonparametric density estimation with adversarial losses
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Shashank Singh Ananya Uppal Boyue Li Chun-Liang Li Manzil Zaheer Barnabás Póczos Machine Learning Department Carnegie Mellon University and Department of Statistics & Data Science Carnegie Mellon University Department of Mathematical Sciences Carnegie Mellon University Language Technologies Institute Carnegie Mellon University Machine Learning Department Carnegie Mellon University
We study minimax convergence rates of nonparametric density estimation under a large class of loss functions called "adversarial losses", which, besides classical Lp losses, includes maximum mean discrepancy...
来源: 评论
Prime-residue-class of uniform charges on the integers
arXiv
收藏 引用
arXiv 2018年
作者: Spece, Michael Kadane, Joseph B. Department of Statistics & Data Science and Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States Department of Statistics & Data Science Carnegie Mellon University PittsburghPA15213 United States
There is a probability charge on the power set of the integers that gives probability 1/p to every residue class modulo a prime p. There exists such a charge that gives probability w to the set of prime numbers iff w ... 详细信息
来源: 评论
Uplink-downlink duality between multiple-access and broadcast channels with compressing relays
arXiv
收藏 引用
arXiv 2020年
作者: Liu, Liang Liu, Ya-Feng Patil, Pratik Yu, Wei the Department of Electronic and Information Engineering The Hong Kong Polytechnic University Hong Kong the State Key Laboratory of Scientific and Engineering Computing Institute of Computational Mathematics and Scientific/Engineering Computing Academy of Mathematics and Systems Science Chinese Academy of Sciences Beijing100190 China The Edward S. Rogers Sr. Department of Electrical and Computer Engineering the University of Toronto the Department of Statistics and Data Science and the Machine Learning Department Carnegie Mellon University PittsburghPA15213 United States The Edward S. Rogers Sr. Department of Electrical and Computer Engineering University of Toronto 10 King’s College Road TorontoONM5S3G4 Canada
—Uplink-downlink duality refers to the fact that under a sum-power constraint, the capacity regions of a Gaussian multiple-access channel and a Gaussian broadcast channel with Hermitian transposed channel matrices ar... 详细信息
来源: 评论
Evaluating the Accuracy and Reliability of Real-World Digital Mobility Outcomes in Older Adults After Hip Fracture: Cross-Sectional Observational Study
收藏 引用
JMIR Formative Research 2025年 9卷 e67792页
作者: Berge, Martin A. Paraschiv-Ionescu, Anisoara Kirk, Cameron Küderle, Arne Micó-Amigo, Encarna Becker, Clemens Cereatti, Andrea Del Din, Silvia Engdal, Monika Garcia-Aymerich, Judith Grønvik, Karoline B. Hansen, Clint Hausdorff, Jeffrey M. Helbostad, Jorunn L. Jansen, Carl-Philipp Johnsen, Lars Gunnar Klenk, Jochen Koch, Sarah Maetzler, Walter Megaritis, Dimitrios Müller, Arne Rochester, Lynn Schwickert, Lars Taraldsen, Kristin Vereijken, Beatrix Department of Neuromedicine and Movement Science Norwegian University of Science and Technology Trondheim Norway Laboratory of Movement Analysis and Measurement Ecole Polytechnique Federale de Lausanne Lausanne Switzerland Translational and Clinical Research Institute Faculty of Medical Sciences Newcastle University Newcastle Upon Tyne United Kingdom Machine Learning and Data Analytics Lab Department Artificial Intelligence in Biomedical Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg Erlangen Germany Geriatric Center Medical Faculty Heidelberg Heidelberg University Heidelberg Germany Department of Geriatrics and Rehabilitation Robert Bosch Hospital Stuttgart Germany Department of Electronics and Telecommunications Politecnico di Torino Turin Italy National Institute for Health and Care Research Newcastle Biomedical Research Centre Newcastle University The Newcastle Upon Tyne Hospitals NHS Foundation Trust Newcastle Upon Tyne United Kingdom Barcelona Institute for Global Health Barcelona Spain Department of Medicine and Life Sciences Universitat Pompeu Fabra Catalonia Barcelona Spain CIBER Epidemiología y Salud Pública Madrid Spain Department of Neurology University Hospital Schleswig-Holstein Kiel University Kiel Germany Center for the Study of Movement Cognition and Mobility Neurological Institute Tel Aviv Medical Center Tel Aviv Israel Department of Physical Therapy Faculty of Medical & Health Sciences Tel Aviv University Tel Aviv Israel Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel Rush Alzheimer’s Disease Center Rush University Medical Center Chicago IL United States Department of Orthopedic Surgery Rush Medical College Rush University Chicago IL United States Department of Orthopaedic Surgery St. Olav’s Hospital Trondheim Norway Institute of Epidemiology and Medical Biometry Ulm University Ulm Germany IB University of Health and Social Sciences Study Centre Stuttgart Stuttgart Germany Department of Sport
Background: Algorithms estimating real-world digital mobility outcomes (DMOs) are increasingly validated in healthy adults and various disease cohorts. However, their accuracy and reliability in older adults after hip... 详细信息
来源: 评论
Smart Annotation Tool for Multi-sensor Gait-based Daily Activity data
Smart Annotation Tool for Multi-sensor Gait-based Daily Acti...
收藏 引用
IEEE International Conference on Pervasive Computing and Communications
作者: Christine F. Martindale Nils Roth Julius Hannink Sebastijan Sprager Bjoern M. Eskofier Machine Learning and Data Analytics Lab Computer Science Department Friedrich-Alexander University Erlangen-Nürnberg Germany Faculty of Computer and Information Science University of Ljubljana Slovenia
The monitoring of patients within a natural, home environment is important in order to close knowledge gaps in the treatment and care of neurodegenerative diseases, such as quantifying the daily fluctuation of Parkins... 详细信息
来源: 评论
Gradient descent finds global minima of deep neural networks
arXiv
收藏 引用
arXiv 2018年
作者: Du, Simon S. Lee, Jason D. Li, Haochuan Wang, Liwei Zhai, Xiyu Machine Learning Department Carnegie Mellon University Data Science and Operations Department University of Southern California School of Physics Peking University Center for Data Science Peking University Beijing Institute of Big Data Research Key Laboratory of Machine Perception Moe School of Eecs Peking University Department of Eecs Massachusetts Institute of Technology
Gradient descent finds a global minimum in training deep neural networks despite the objective function being non-convex. The current paper proves gradient descent achieves zero training loss in polynomial time for a ... 详细信息
来源: 评论
Open and Sustainable AI: challenges, opportunities and the road ahead in the life sciences
arXiv
收藏 引用
arXiv 2025年
作者: Farrell, Gavin Adamidi, Eleni Buono, Rafael Andrade Anton, Mihail Attafi, Omar Abdelghani Gutierrez, Salvador Capella Capriotti, Emidio Castro, Leyla Jael Cirillo, Davide Crossman, Lisa Dessimoz, Christophe Dimopoulos, Alexandros Fernández-Díaz, Raúl Fragkouli, Styliani-Christina Goble, Carole Gu, Wei Hancock, John M. Khanteymoori, Alireza Lenaerts, Tom Liberante, Fabio G. Maccallum, Peter Monzon, Alexander Miguel Palmblad, Magnus Poveda, Lucy Radulescu, Ovidiu Shields, Denis C. Sufi, Shoaib Vergoulis, Thanasis Psomopoulos, Fotis Tosatto, Silvio C.E. Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki Greece 1Department of Biomedical Sciences University of Padova Padova35121 Italy Department of Biomedical Sciences University of Padova Via Ugo Bassi 58/B Padova35131 Italy Athena Research & Innovation Center Aigialias & Chalepa Marousi15125 Greece VIB Data Core VIB.AI Center for AI & Computational Biology Technologiepark-Zwijnaarde 75 Ghent9052 Belgium ELIXIR Europe Hub EMBL-EBI South Building Wellcome Genome HinxtonCB10 1SD United Kingdom Plaça Eusebi Güell 1-3 Barcelona08034 Spain Department of Pharmacy and Biotechnology University of Bologna Bologna40126 Italy Computational Genomics Platform IRCCS University Hospital of Bologna Bologna40138 Italy ZB MED Information Centre for Life Sciences Gleueler Straße 60 Cologne50931 Germany SequenceAnalysis.co.uk United Kingdom University of East Anglia Research Park NorwichNR4 7TJ United Kingdom Department of Computational Biology University of Lausanne Genopode 2024.3 Lausanne1015 Switzerland Swiss Institute of Bioinformatics Amphipôle Quartier UNIL-Sorge Lausanne1015 Switzerland Institute for Fundamental Biomedical Science Biomedical Sciences Research Center Alexander Fleming Vari Greece Department of Informatics & Telematics School of Digital Technology Harokopio University Athens Greece School of Medicine University College Dublin Belfield Dublin 4 Ireland Conway Institute of Biomolecular and Biomedical Research University College Dublin Belfield Dublin 4 Ireland IBM Research Dublin DublinD15 HN66 Ireland Institute of Applied Biosciences Centre for Research and Technology Hellas Thessaloniki57001 Greece Department of Biology National & Kapodistrian University of Athens Athens15772 Greece Department of Computer Science University of Manchester Oxford Road ManchesterM19 3PL United Kingdom Luxembourg National Data Service 6 avenue des Hauts-Fourneaux Esch-sur-AlzetteL-4362 Luxembourg Insti
Artificial intelligence (AI) has recently seen transformative breakthroughs in the life sciences, expanding possibilities for researchers to interpret biological information at an unprecedented capacity, with novel ap... 详细信息
来源: 评论
Algorithmic regularization in learning deep homogeneous models: layers are automatically balanced  18
Algorithmic regularization in learning deep homogeneous mode...
收藏 引用
Proceedings of the 32nd International Conference on Neural Information Processing Systems
作者: Simon S. Du Wei Hu Jason D. Lee Machine Learning Department School of Computer Science Carnegie Mellon University Computer Science Department Princeton University Department of Data Sciences and Operations Marshall School of Business University of Southern California
We study the implicit regularization imposed by gradient descent for learning multi-layer homogeneous functions including feed-forward fully connected and convolutional deep neural networks with linear, ReLU or Leaky ...
来源: 评论