咨询与建议

限定检索结果

文献类型

  • 489 篇 期刊文献
  • 349 篇 会议
  • 1 册 图书

馆藏范围

  • 839 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 505 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 106 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 64 篇 生物医学工程(可授...
    • 42 篇 光学工程
    • 40 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 34 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 18 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 384 篇 理学
    • 221 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 79 篇 物理学
    • 48 篇 化学
    • 39 篇 系统科学
  • 120 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 58 篇 医学
    • 46 篇 临床医学
    • 43 篇 基础医学(可授医学...
    • 28 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 18 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 53 篇 machine learning
  • 47 篇 deep learning
  • 43 篇 accuracy
  • 25 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 medical services
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 13 篇 machine learning...
  • 12 篇 data models
  • 11 篇 scalability

机构

  • 58 篇 machine learning...
  • 46 篇 department of st...
  • 22 篇 munich center fo...
  • 21 篇 center for data ...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 17 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 61 篇 ramdas aaditya
  • 21 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 17 篇 verma prateek
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 12 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 747 篇 英文
  • 89 篇 其他
  • 1 篇 中文
检索条件"机构=Data Science and Machine Learning Department"
839 条 记 录,以下是91-100 订阅
排序:
Smart Attendance Management using a Self-Supervised learning Approach  5
Smart Attendance Management using a Self-Supervised Learning...
收藏 引用
5th International Conference on Image Processing and Capsule Networks, ICIPCN 2024
作者: Vikram, D. Ajina, H. Gokilapriya, S. Malini, M. Rathinam Technical Campus Department of Computer Science and Engineering Coimbatore India Rathinam Technical Campus Department of Artificial Intelligence and Data Science Coimbatore India Kalingarkarunanidhi Institute of Technology Department of Artificial Intelligence and Machine Learning Coimbatore India Sri G.V.G Visalakshi College for Women Department of Information Technology Udumalpet India
Organizational efficiency is significantly influenced by automated attendance management systems, yet traditional methods often lack flexibility and reliability. This study proposes a novel approach to transform the S... 详细信息
来源: 评论
Hypothesis testing with e-values
arXiv
收藏 引用
arXiv 2024年
作者: Ramdas, Aaditya Wang, Ruodu Department of Statistics and Data Science Machine Learning Department Carnegie Mellon University United States Department of Statistics and Actuarial Science University of Waterloo Canada
This book is written to offer a humble, but unified, treatment of e-values inhypothesis testing. The book is organized into three parts: FundamentalConcepts, Core Ideas, and Advanced Topics. The first part includes th...
来源: 评论
Estimating relative diffusion from 3D micro-CT images using CNNs
收藏 引用
Artificial Intelligence in Geosciences 2023年 第1期4卷 199-208页
作者: Stephan Gättner Florian Frank Fabian Woller Andreas Meier Nadja Ray Friedrich-Alexander-Universitat Erlangen-Nürnberg Department MathematikCauerstraβe 11Erlangen91058Germany Math2 Market GmbH Richard-Wagner-Straβe 1Kaiserslautern67655Germany Mathematical Institute for Machine Learning and Data Science Goldknopfgasse 7Ingolstadt49085Germany
In recent years,convolutional neural networks(CNNs)have demonstrated their effectiveness in predicting bulk parameters,such as effective diffusion,directly from pore-space *** offer significant computational advantage... 详细信息
来源: 评论
Method for the Automatic Modulation Classification for the Sums of Phase- Shift-Keying Signals Based on Polynomial Features
Method for the Automatic Modulation Classification for the S...
收藏 引用
IEEE International Conference on Electronics and Nanotechnology (ELNANO)
作者: Vasyl Semenov Yevheniya V. Semenova Laboratory of Data Science and Machine Learning Kyiv Academic University American University Kyiv Delta SPE LLC Kyiv Ukraine Department of Numerical Mathematics Institute of Mathematics of NANU Laboratory of Data Science and Machine Learning Kyiv Academic University Kyiv Ukraine
This paper considers the task of automatic modulation classification for the sums of phase-shift keying (PSK) signals which occupy the same frequency bandwidth and have the same modulation. This problem is an importan... 详细信息
来源: 评论
Investor Risk Profile Determination Model  16
Investor Risk Profile Determination Model
收藏 引用
16th International Conference Management of Large-Scale System Development, MLSD 2023
作者: Gorelik, Victor Zolotova, Tatiana Federal Research Center 'Computer Science and Control' of the Russian Academy of Sciences Department of Simulation Systems and Operations Research Moscow Russia Financial University under the Government of the Russian Federation Department of Data Analysis and Machine Learning Moscow Russia
An assessment of the investor's risk profile is proposed as a risk coefficient in a model with a linear convolution of expected return and variance. The value of the risk coefficient is found from solving the opti... 详细信息
来源: 评论
Optimization and Benchmarking of Convolutional Networks with Quantization and OpenVINO in Baggage Image Recognition  8
Optimization and Benchmarking of Convolutional Networks with...
收藏 引用
8th International Conference on Information Technology and Nanotechnology, ITNT 2022
作者: Andriyanov, Nikita Papakostas, George Financial University under the Government of the Russian Federation Department of Data Analysis and Machine Learning Moscow Russia International Hellenic University Department of Computer Science Thessaloniki Greece
The paper is devoted to the study of the neural networks inference acceleration using the weights quantization and Intel OpenVINO Toolkit. At the same time, the study considers block architecture convolutional network... 详细信息
来源: 评论
Positive Semidefinite Matrix Supermartingales
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We explore the asymptotic convergence and nonasymptotic maximal inequalities of supermartingales and backward submartingales in the space of positive semidefinite matrices. These are natural matrix analogs of scalar n... 详细信息
来源: 评论
Sharp Matrix Empirical Bernstein Inequalities
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
We present two sharp empirical Bernstein inequalities for symmetric random matrices with bounded eigenvalues. By sharp, we mean that both inequalities adapt to the unknown variance in a tight manner: the deviation cap... 详细信息
来源: 评论
Customer Segmentation Using Clustering Analysis
Customer Segmentation Using Clustering Analysis
收藏 引用
2024 IEEE International Conference on Information Technology, Electronics and Intelligent Communication Systems, ICITEICS 2024
作者: Jiet, Moses Makuei Kamble, Aahash Puri, Chetan Yesankar, Prajyot Verma, Prateek Rewatkar, Rajendra Faculty of Engineering and Technology Department of Computer Science & Design Maharashtra Wardha442001 India Faculty of Engineering and Technology Department of Artificial Intelligence & Data Science Maharashtra Wardha442001 India Faculty of Engineering and Technology Department of Artificial Intelligence & Machine Learning Maharashtra Wardha442001 India Faculty of Engineering and Technology Department of Biomedical Engineering Maharashtra Wardha442001 India
This research focuses on the crucial role of the clustering technique in data mining, specifically in market forecasting and planning. The study presents a comprehensive report on utilizing the k-means clustering tech... 详细信息
来源: 评论
Testing by Betting while Borrowing and Bargaining
arXiv
收藏 引用
arXiv 2024年
作者: Wang, Hongjian Ramdas, Aaditya Department of Statistics and Data Science Carnegie Mellon University United States Machine Learning Department Carnegie Mellon University United States
Testing by betting has been a cornerstone of the game-theoretic statistics literature. In this framework, a betting score (or more generally an e-process), as opposed to a traditional p-value, is used to quantify the ... 详细信息
来源: 评论