咨询与建议

限定检索结果

文献类型

  • 485 篇 期刊文献
  • 354 篇 会议
  • 1 册 图书

馆藏范围

  • 840 篇 电子文献
  • 0 种 纸本馆藏

日期分布

学科分类号

  • 510 篇 工学
    • 344 篇 计算机科学与技术...
    • 300 篇 软件工程
    • 108 篇 生物工程
    • 71 篇 信息与通信工程
    • 67 篇 控制科学与工程
    • 67 篇 生物医学工程(可授...
    • 43 篇 光学工程
    • 41 篇 电气工程
    • 39 篇 安全科学与工程
    • 37 篇 化学工程与技术
    • 35 篇 电子科学与技术(可...
    • 22 篇 机械工程
    • 17 篇 仪器科学与技术
    • 17 篇 建筑学
    • 17 篇 土木工程
  • 388 篇 理学
    • 223 篇 数学
    • 130 篇 统计学(可授理学、...
    • 120 篇 生物学
    • 82 篇 物理学
    • 50 篇 化学
    • 40 篇 系统科学
  • 121 篇 管理学
    • 66 篇 管理科学与工程(可...
    • 55 篇 图书情报与档案管...
    • 38 篇 工商管理
  • 63 篇 医学
    • 50 篇 临床医学
    • 46 篇 基础医学(可授医学...
    • 32 篇 公共卫生与预防医...
    • 21 篇 药学(可授医学、理...
  • 21 篇 法学
    • 19 篇 社会学
  • 16 篇 农学
  • 15 篇 经济学
    • 15 篇 应用经济学
  • 5 篇 教育学
  • 2 篇 军事学
  • 1 篇 文学

主题

  • 52 篇 machine learning
  • 48 篇 deep learning
  • 44 篇 accuracy
  • 24 篇 convolutional ne...
  • 23 篇 real-time system...
  • 21 篇 reviews
  • 18 篇 medical services
  • 18 篇 decision making
  • 18 篇 training
  • 17 篇 predictive model...
  • 17 篇 feature extracti...
  • 17 篇 forecasting
  • 14 篇 artificial intel...
  • 14 篇 diseases
  • 14 篇 machine learning...
  • 13 篇 reinforcement le...
  • 13 篇 support vector m...
  • 13 篇 optimization
  • 12 篇 image segmentati...
  • 12 篇 data models

机构

  • 60 篇 machine learning...
  • 47 篇 department of st...
  • 22 篇 center for data ...
  • 22 篇 munich center fo...
  • 19 篇 machine learning...
  • 18 篇 department of st...
  • 18 篇 center for machi...
  • 18 篇 machine learning...
  • 14 篇 department of el...
  • 14 篇 department of el...
  • 14 篇 machine learning...
  • 13 篇 department of ar...
  • 13 篇 vector institute...
  • 13 篇 australian insti...
  • 11 篇 department of ar...
  • 11 篇 department of st...
  • 10 篇 department of st...
  • 10 篇 department of ar...
  • 9 篇 department of st...
  • 8 篇 machine learning...

作者

  • 63 篇 ramdas aaditya
  • 20 篇 müller klaus-rob...
  • 19 篇 prateek verma
  • 18 篇 verma prateek
  • 18 篇 wasserman larry
  • 18 篇 balakrishnan siv...
  • 14 篇 ghojogh benyamin
  • 14 篇 ghodsi ali
  • 14 篇 du jin-hong
  • 14 篇 karray fakhri
  • 14 篇 crowley mark
  • 13 篇 von lilienfeld o...
  • 13 篇 patil pratik
  • 12 篇 aditya barhate
  • 11 篇 montavon grégoir...
  • 11 篇 krahmer felix
  • 10 篇 ravikumar pradee...
  • 10 篇 do thanh-toan
  • 10 篇 wang hongjian
  • 10 篇 abhay tale

语言

  • 587 篇 英文
  • 251 篇 其他
  • 2 篇 中文
检索条件"机构=Data Science and Machine Learning Department"
840 条 记 录,以下是491-500 订阅
排序:
Sentiment Analysis Using machine learning Methods
Sentiment Analysis Using Machine Learning Methods
收藏 引用
Intelligent & Innovative Practices in Engineering & Management (IIPEM), International Conference on
作者: Abhishek Badholia Tarun Dhar Diwan Preeti Narooka Pravin B Khatkale Ankit Vishnoi Keshav Kaushik Department of Data Science Shri Shankaracharya Institute of Professional Management and Technology Raipur Atal Bihari Vajpayee University Bilaspur India Artificial Intelligence and Machine Learning School of Computer and Engineering Manipal University Jaipur India Sanjivani University Kopargaon Maharashtra India Department of Computer Science and Engineering Graphic Era Deemed to be University Dehradun Uttarakhand India Amity School of Engineering and Technology Amity University Punjab Mohali India
machine learning (ML) will be utilized to evaluate sentiment analysis in this project. This study aims to do this. Sentiment analysis is a popular natural language processing area. This is a natural language processin... 详细信息
来源: 评论
Empirical Macroeconomics and DSGE Modeling in Statistical Perspective
arXiv
收藏 引用
arXiv 2022年
作者: McDonald, Daniel J. Shalizi, Cosma Rohilla Department of Statistics University of British Columbia VancouverBC Canada Department of Statistics and Data Science and of Machine Learning Carnegie Mellon University PittsburghPA United States Santa Fe Institute Santa FeNM United States
Dynamic stochastic general equilibrium (DSGE) models have been an ubiquitous, and controversial, part of macroeconomics for decades. In this paper, we approach DSGEs purely as statstical models. We do this by applying... 详细信息
来源: 评论
Topic Modelling using Transfer learning: Issues and Challenges
Topic Modelling using Transfer Learning: Issues and Challeng...
收藏 引用
Intelligent Control, Computing and Communications (IC3), International Conference on
作者: Rama Krishna K Kaipa Sandhya Praveen Gujjar J Raghavendra M Devadas Vani Hiremani Preethi Department of Artificial Intelligence and Machine Learning Impact college of Engineering and Applied Sciences Bengaluru India Department of Data Science Impact college of Engineering and applied sciences Bengaluru India Faculty of Management Studies JAIN (Deemed-to-be University) Bengaluru India Department of Information Technology Manipal Institute of Technology Bengaluru Manipal Academy of Higher Education (MAHE) Manipal India Symbiosis Institute of Technology Symbiosis International (Deemed) University Pune India
A machine learning method, transfer learning, uses information from one job or area to enhance effectiveness in a related but distinct task or area. Transfer learning enables using pre-trained models that were previou... 详细信息
来源: 评论
Regression with comparisons: escaping the curse of dimensionality with ordinal information
The Journal of Machine Learning Research
收藏 引用
The Journal of machine learning Research 2020年 第1期21卷 6480-6533页
作者: Yichong Xu Sivaraman Balakrishnan Aarti Singh Artur Dubrawski Machine Learning Department Department of Statistics and Data Science Machine Learning Department Auton Lab The Robotics Institute Carnegie Mellon University Pittsburgh PA
In supervised learning, we typically leverage a fully labeled dataset to design methods for function estimation or prediction. In many practical situations, we are able to obtain alternative feedback, possibly at a lo... 详细信息
来源: 评论
Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics
arXiv
收藏 引用
arXiv 2024年
作者: Chen, Yenho Mudrik, Noga Johnsen, Kyle A. Alagapan, Sankaraleengam Charles, Adam S. Rozell, Christopher J. Machine Learning Center Georgia Institute of Technology United States School of Electrical and Computer Engineering Georgia Institute of Technology United States Coulter Dept. of Biomedical Engineering Emory University Georgia Institute of Technology United States Department of Biomedical Engineering Mathematical Institute for Data Science Center for Imaging Science Kavli Neuroscience Discovery Institute Johns Hopkins University United States
Time-varying linear state-space models are powerful tools for obtaining mathematically interpretable representations of neural signals. For example, switching and decomposed models describe complex systems using laten... 详细信息
来源: 评论
Giant Trevally Optimizer (GTO): Enhancing HVDC Transmission Capacity with Optimized Fault Current Limiters and HVDC Circuit Breaker Parameters
Giant Trevally Optimizer (GTO): Enhancing HVDC Transmission ...
收藏 引用
Electronics and Renewable Systems (ICEARS), International Conference on
作者: M. Siva Ramkumar Saranya. N Gokul Gopan Rahmath Ulla Baig Josha Daniel S Babu M Department of ECE SNS College of Technology India Department of Artificial Intelligence and Data Science Karpagam College of Engineering India Department of Mechanical Engineering Saveetha School of Engineering Saveetha Institute of Medical and Technical Sciences (SIMATS) Saveetha University Chennai India Department of Artificial Intelligence and Machine Learning Cambridge Institute of Technology K R Puram Bangalore Department of EEE Hindustan College of Engineering and Technology India Master of Engineering in Embedded Systems Hindusthan College of Engineering and Technology India
The multi-terminal HVDC system relies heavily on circuit breakers (CBs) and fault current limiters (FCLs) for protection and performance reliability. This research describes a new Giant Trevally optimizer-based strate... 详细信息
来源: 评论
Disease and Medications Text Visualization Using Scattertext
Disease and Medications Text Visualization Using Scattertext
收藏 引用
Intelligent Control, Computing and Communications (IC3), International Conference on
作者: Rama Krishna K Kaipa Sandhya Praveen Gujjar J Raghavendra M Devadas Vani Hiremani Sapna R Department of Artificial Intelligence and Machine Learning Impact college of Engineering and Applied Sciences Bengaluru India Department of Data Science Impact college of Engineering and applied sciences Bengaluru India Faculty of Management Studies JAIN (Deemed-to-be University) Bengaluru India Department of Information Technology Manipal Institute of Technology Bengaluru Manipal Academy of Higher Education (MAHE) Manipal India Symbiosis Institute of Technology Symbiosis International (Deemed) University Pune India
Before text data can be analysed and visualised, it must be thoroughly cleaned due to its messy nature. data visualizations use the data to tell an engaging and simple-to-read story. That is what the Scattertext tool ... 详细信息
来源: 评论
Gradients should stay on Path: Better Estimators of the Reverse- and Forward KL Divergence for Normalizing Flows
arXiv
收藏 引用
arXiv 2022年
作者: Vaitl, Lorenz Nicoli, Kim Andrea Nakajima, Shinichi Kessel, Pan Machine Learning Group Department of Electrical Engineering & Computer Science Technische Universität Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany RIKEN Center for AIP Chuo City Tokyo103-0027 Japan
We propose an algorithm to estimate the path-gradient of both the reverse and forward Kullback–Leibler divergence for an arbitrary manifestly invertible normalizing flow. The resulting path-gradient estimators are st...
来源: 评论
Path-Gradient Estimators for Continuous Normalizing Flows
arXiv
收藏 引用
arXiv 2022年
作者: Vaitl, Lorenz Nicoli, Kim Andrea Nakajima, Shinichi Kessel, Pan Machine Learning Group Department of Electrical Engineering & Computer Science Technische Universität Berlin Germany BIFOLD - Berlin Institute for the Foundations of Learning and Data Technische Universität Berlin Berlin Germany RIKEN Center for AIP Chuo City Tokyo103-0027 Japan
Recent work has established a path-gradient estimator for simple variational Gaussian distributions and has argued that the path-gradient is particularly beneficial in the regime in which the variational distribution ...
来源: 评论
Evaluating Posterior Distributions by Selectively Breeding Prior Samples
arXiv
收藏 引用
arXiv 2022年
作者: Shalizi, Cosma Rohilla Department of Statistics and Data Science and of Machine Learning Carnegie Mellon University PittsburghPA15213 United States The Santa Fe Institute 1399 Hyde Park Road Santa FeNM87501 United States
Using Markov chain Monte Carlo to sample from posterior distributions was the key innovation which made Bayesian data analysis practical. Notoriously, however, MCMC is hard to tune, hard to diagnose, and hard to paral... 详细信息
来源: 评论